{"title":"Rainbow Vertex Connection Number pada Keluarga Graf Roda","authors":"F. Firman., D. Dafik, E. R. Albirri","doi":"10.25037/cgantjma.v3i1.71","DOIUrl":null,"url":null,"abstract":"The rainbow vertex connection was first introduced by krivelevich and yuster in 2009 which is an extension of the rainbow connection. Let graph $G =(V,E)$ is a connected graph. Rainbow vertex-connection is the assignment of color to the vertices of a graph $G$, if every vertex on graph $G$ is connected by a path that has interior vertices with different colors. The minimum number of colors from the rainbow vertex coloring in graph $G$ is called rainbow vertex connection number which is denoted $rvc(G)$. The result of the research are the rainbow vertex connection number of family wheel graphs.","PeriodicalId":305608,"journal":{"name":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CGANT JOURNAL OF MATHEMATICS AND APPLICATIONS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25037/cgantjma.v3i1.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The rainbow vertex connection was first introduced by krivelevich and yuster in 2009 which is an extension of the rainbow connection. Let graph $G =(V,E)$ is a connected graph. Rainbow vertex-connection is the assignment of color to the vertices of a graph $G$, if every vertex on graph $G$ is connected by a path that has interior vertices with different colors. The minimum number of colors from the rainbow vertex coloring in graph $G$ is called rainbow vertex connection number which is denoted $rvc(G)$. The result of the research are the rainbow vertex connection number of family wheel graphs.