A. Gonz'alez-Arroyo, I. Kanamori, K. Ishikawa, Kanata Miyahana, M. Okawa, Ryoichi Ueno
{"title":"Towards higher order numerical stochastic perturbation computation applied to the twisted Eguchi-Kawai model","authors":"A. Gonz'alez-Arroyo, I. Kanamori, K. Ishikawa, Kanata Miyahana, M. Okawa, Ryoichi Ueno","doi":"10.22323/1.363.0030","DOIUrl":null,"url":null,"abstract":"We have evaluated perturbation coefficients of Wilson loops up to $O(g^8)$ for the four-dimensional twisted Eguchi-Kawai model using the numerical stochastic perturbation theory (NSPT) in arXiv:1902.09847. In this talk we present a progress report on the higher order calculation up to $O(g^{63})$, for which we apply a fast Fourier transformation (FFT) based convolution algorithm to the multiplication of polynomial matrices in the NSPT aiming for higher order calculation. We compare two implementations with the CPU-only version and the GPU version of the FFT based convolution algorithm, and find a factor 9 improvement on the computational speed of the NSPT algorithm with SU($N=225$) at $O(g^{31})$. The perturbation order dependence of the computational time, we investigate it up to $O(g^{63})$, shows a mild scaling behavior on the truncation order.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We have evaluated perturbation coefficients of Wilson loops up to $O(g^8)$ for the four-dimensional twisted Eguchi-Kawai model using the numerical stochastic perturbation theory (NSPT) in arXiv:1902.09847. In this talk we present a progress report on the higher order calculation up to $O(g^{63})$, for which we apply a fast Fourier transformation (FFT) based convolution algorithm to the multiplication of polynomial matrices in the NSPT aiming for higher order calculation. We compare two implementations with the CPU-only version and the GPU version of the FFT based convolution algorithm, and find a factor 9 improvement on the computational speed of the NSPT algorithm with SU($N=225$) at $O(g^{31})$. The perturbation order dependence of the computational time, we investigate it up to $O(g^{63})$, shows a mild scaling behavior on the truncation order.