Towards higher order numerical stochastic perturbation computation applied to the twisted Eguchi-Kawai model

A. Gonz'alez-Arroyo, I. Kanamori, K. Ishikawa, Kanata Miyahana, M. Okawa, Ryoichi Ueno
{"title":"Towards higher order numerical stochastic perturbation computation applied to the twisted Eguchi-Kawai model","authors":"A. Gonz'alez-Arroyo, I. Kanamori, K. Ishikawa, Kanata Miyahana, M. Okawa, Ryoichi Ueno","doi":"10.22323/1.363.0030","DOIUrl":null,"url":null,"abstract":"We have evaluated perturbation coefficients of Wilson loops up to $O(g^8)$ for the four-dimensional twisted Eguchi-Kawai model using the numerical stochastic perturbation theory (NSPT) in arXiv:1902.09847. In this talk we present a progress report on the higher order calculation up to $O(g^{63})$, for which we apply a fast Fourier transformation (FFT) based convolution algorithm to the multiplication of polynomial matrices in the NSPT aiming for higher order calculation. We compare two implementations with the CPU-only version and the GPU version of the FFT based convolution algorithm, and find a factor 9 improvement on the computational speed of the NSPT algorithm with SU($N=225$) at $O(g^{31})$. The perturbation order dependence of the computational time, we investigate it up to $O(g^{63})$, shows a mild scaling behavior on the truncation order.","PeriodicalId":147987,"journal":{"name":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Symposium on Lattice Field Theory — PoS(LATTICE2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have evaluated perturbation coefficients of Wilson loops up to $O(g^8)$ for the four-dimensional twisted Eguchi-Kawai model using the numerical stochastic perturbation theory (NSPT) in arXiv:1902.09847. In this talk we present a progress report on the higher order calculation up to $O(g^{63})$, for which we apply a fast Fourier transformation (FFT) based convolution algorithm to the multiplication of polynomial matrices in the NSPT aiming for higher order calculation. We compare two implementations with the CPU-only version and the GPU version of the FFT based convolution algorithm, and find a factor 9 improvement on the computational speed of the NSPT algorithm with SU($N=225$) at $O(g^{31})$. The perturbation order dependence of the computational time, we investigate it up to $O(g^{63})$, shows a mild scaling behavior on the truncation order.
高阶数值随机摄动计算在扭曲Eguchi-Kawai模型中的应用
我们利用数值随机摄动理论(NSPT)计算了四维扭曲Eguchi-Kawai模型高达$O(g^8)$的Wilson环的摄动系数。在这次演讲中,我们提出了一份关于高达$O(g^{63})$的高阶计算的进展报告,为此我们将基于快速傅里叶变换(FFT)的卷积算法应用于NSPT中多项式矩阵的乘法,旨在进行高阶计算。我们比较了基于FFT的卷积算法的cpu版本和GPU版本的两种实现,发现SU($N=225$)在$O(g^{31})$下的NSPT算法的计算速度提高了9倍。对于计算时间的扰动阶依赖,我们研究了它在$O(g^{63})$范围内,对截断阶表现出温和的缩放行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信