An MCD-based local ACE algorithm for hyperspectral imagery target detection

Hangqi Yan, Yanning Zhang, Wei Wei, Lei Zhang, Fei Li, Bobo Wang
{"title":"An MCD-based local ACE algorithm for hyperspectral imagery target detection","authors":"Hangqi Yan, Yanning Zhang, Wei Wei, Lei Zhang, Fei Li, Bobo Wang","doi":"10.1109/ICOT.2014.6954667","DOIUrl":null,"url":null,"abstract":"Unstructured detectors such as KGLRT, ACE and AMF are widely applied for target detection in hyperspectral imagery (HSI). However, conventional global and local approaches construct background model without considering the contamination caused by anomalies and suspected targets. This paper proposes a local ACE algorithm based on the minimum covariance determinant (MCD) estimator. In the proposed algorithm, a spectral angle based clustering method is applied to the whitened hyperspectral data to form several disjoint clusters over the whole image. Then for each cluster, the robust estimations of its background statistics are obtained using the MCD estimator. Finally, the ACE detector is applied to each pixel utilizing the robust background statistics of the cluster. With experimental results on two different real datasets, the superiority of the proposed algorithm is demonstrated.","PeriodicalId":343641,"journal":{"name":"2014 International Conference on Orange Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Orange Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOT.2014.6954667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Unstructured detectors such as KGLRT, ACE and AMF are widely applied for target detection in hyperspectral imagery (HSI). However, conventional global and local approaches construct background model without considering the contamination caused by anomalies and suspected targets. This paper proposes a local ACE algorithm based on the minimum covariance determinant (MCD) estimator. In the proposed algorithm, a spectral angle based clustering method is applied to the whitened hyperspectral data to form several disjoint clusters over the whole image. Then for each cluster, the robust estimations of its background statistics are obtained using the MCD estimator. Finally, the ACE detector is applied to each pixel utilizing the robust background statistics of the cluster. With experimental results on two different real datasets, the superiority of the proposed algorithm is demonstrated.
一种基于mcd的局部ACE算法用于高光谱图像目标检测
KGLRT、ACE和AMF等非结构化探测器在高光谱成像(HSI)中被广泛应用于目标检测。然而,传统的全局和局部方法在构建背景模型时没有考虑异常和可疑目标造成的污染。提出了一种基于最小协方差行列式(MCD)估计量的局部ACE算法。该算法采用基于光谱角的聚类方法对白化后的高光谱数据进行聚类,在整幅图像上形成多个不相交的聚类。然后利用MCD估计器对每个聚类的背景统计量进行鲁棒估计。最后,利用集群的鲁棒背景统计量将ACE检测器应用于每个像素。在两个不同的真实数据集上进行了实验,验证了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信