Social network analysis of TV drama characters via deep concept hierarchies

Chang-Jun Nan, Kyung-Min Kim, Byoung-Tak Zhang
{"title":"Social network analysis of TV drama characters via deep concept hierarchies","authors":"Chang-Jun Nan, Kyung-Min Kim, Byoung-Tak Zhang","doi":"10.1145/2808797.2809306","DOIUrl":null,"url":null,"abstract":"TV drama is a kind of big data, containing enormous knowledge of modern human society. As the character-centered stories unfold, diverse knowledge, such as economics, politics and the culture, is displayed. However, unless we have efficient dynamic multi-modal data processing and picture processing methods, we cannot analyze drama data effectively. Here, we adopt the recently proposed deep concept hierarchies (DCH) and convolutional-recursive neural network (C-RNN) models to analyze the social network between the drama characters. DCH uses multi hierarchies structure to translate the vision-language concepts of drama characters into diversified abstract concepts, and utilizes Markov Chain Monte Carlo algorithm to improve the retrieval efficiency of organizing conceptual spaces. Adopting approximately 4400-minute data of TV drama - Friends, we process face recognition on the characters by using convolutional-recursive deep learning model. Then we establish the social network between the characters by deep concept hierarchies model and analyze their affinity and the change of social network while the stories unfold.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2809306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

TV drama is a kind of big data, containing enormous knowledge of modern human society. As the character-centered stories unfold, diverse knowledge, such as economics, politics and the culture, is displayed. However, unless we have efficient dynamic multi-modal data processing and picture processing methods, we cannot analyze drama data effectively. Here, we adopt the recently proposed deep concept hierarchies (DCH) and convolutional-recursive neural network (C-RNN) models to analyze the social network between the drama characters. DCH uses multi hierarchies structure to translate the vision-language concepts of drama characters into diversified abstract concepts, and utilizes Markov Chain Monte Carlo algorithm to improve the retrieval efficiency of organizing conceptual spaces. Adopting approximately 4400-minute data of TV drama - Friends, we process face recognition on the characters by using convolutional-recursive deep learning model. Then we establish the social network between the characters by deep concept hierarchies model and analyze their affinity and the change of social network while the stories unfold.
基于深层概念层次的电视剧角色社会网络分析
电视剧是一种大数据,蕴含着现代人类社会的海量知识。随着以人物为中心的故事的展开,经济、政治、文化等多样的知识得以展现。然而,除非我们有高效的动态多模态数据处理和图像处理方法,否则我们无法有效地分析戏剧数据。在这里,我们采用最近提出的深度概念层次(DCH)和卷积递归神经网络(C-RNN)模型来分析戏剧人物之间的社会网络。DCH采用多层次结构将戏剧人物的视觉语言概念转化为多样化的抽象概念,利用马尔可夫链蒙特卡罗算法提高组织概念空间的检索效率。采用电视剧《老友记》约4400分钟的数据,采用卷积递归深度学习模型对角色进行人脸识别。然后运用深层概念层次模型建立人物之间的社会网络,分析人物之间的亲缘关系以及人物在故事发展过程中社会网络的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信