FeatSet: A Compilation of Visual Features Extracted from Public Image Datasets

M. Cazzolato, L. C. Scabora, Guilherme F. Zabot, M. A. Gutierrez, Caetano Traina Jr., A. Traina
{"title":"FeatSet: A Compilation of Visual Features Extracted from Public Image Datasets","authors":"M. Cazzolato, L. C. Scabora, Guilherme F. Zabot, M. A. Gutierrez, Caetano Traina Jr., A. Traina","doi":"10.5753/dsw.2021.17417","DOIUrl":null,"url":null,"abstract":"In this paper, we present FeatSet, a compilation of visual features extracted from open image datasets reported in the literature. FeatSet has a collection of 11 visual features, consisting of color, texture, and shape representations of the images acquired from 13 datasets. We organized the available features in a standard collection, including the available metadata and labels, when available. We also provide a description of the domain of each dataset included in our collection, with visual analysis using Multidimensional Scaling (MDS) and Principal Components Analysis (PCA) methods. FeatSet is recommended for supervised and non-supervised learning, also widely supporting Content-Based Image Retrieval (CBIR) applications and complex data indexing using Metric Access Methods (MAMs).","PeriodicalId":314975,"journal":{"name":"Anais do III Dataset Showcase Workshop (DSW 2021)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do III Dataset Showcase Workshop (DSW 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/dsw.2021.17417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present FeatSet, a compilation of visual features extracted from open image datasets reported in the literature. FeatSet has a collection of 11 visual features, consisting of color, texture, and shape representations of the images acquired from 13 datasets. We organized the available features in a standard collection, including the available metadata and labels, when available. We also provide a description of the domain of each dataset included in our collection, with visual analysis using Multidimensional Scaling (MDS) and Principal Components Analysis (PCA) methods. FeatSet is recommended for supervised and non-supervised learning, also widely supporting Content-Based Image Retrieval (CBIR) applications and complex data indexing using Metric Access Methods (MAMs).
从公共图像数据集中提取的视觉特征汇编
在本文中,我们介绍了一个从文献中报道的开放图像数据集中提取的视觉特征汇编。FeatSet集合了11个视觉特征,包括从13个数据集获得的图像的颜色、纹理和形状表示。我们将可用的特性组织在一个标准集合中,包括可用的元数据和标签。我们还提供了我们收集的每个数据集的域描述,并使用多维尺度(MDS)和主成分分析(PCA)方法进行可视化分析。推荐用于监督和非监督学习,也广泛支持基于内容的图像检索(CBIR)应用程序和使用度量访问方法(MAMs)的复杂数据索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信