Anran Wang, Jacob E. Sunshine, Shyamnath Gollakota
{"title":"Contactless Infant Monitoring using White Noise","authors":"Anran Wang, Jacob E. Sunshine, Shyamnath Gollakota","doi":"10.1145/3300061.3345453","DOIUrl":null,"url":null,"abstract":"White noise machines are among the most popular devices to facilitate infant sleep. We introduce the first contactless system that uses white noise to achieve motion and respiratory monitoring in infants. Our system is designed for smart speakers that can monitor an infant's sleep using white noise. The key enabler underlying our system is a set of novel algorithms that can extract the minute infant breathing motion as well as position information from white noise which is random in both the time and frequency domain. We describe the design and implementation of our system, and present experiments with a life-like infant simulator as well as a clinical study at the neonatal intensive care unit with five new-born infants. Our study demonstrates that the respiratory rate computed by our system is highly correlated with the ground truth with a correlation coefficient of 0.938.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
White noise machines are among the most popular devices to facilitate infant sleep. We introduce the first contactless system that uses white noise to achieve motion and respiratory monitoring in infants. Our system is designed for smart speakers that can monitor an infant's sleep using white noise. The key enabler underlying our system is a set of novel algorithms that can extract the minute infant breathing motion as well as position information from white noise which is random in both the time and frequency domain. We describe the design and implementation of our system, and present experiments with a life-like infant simulator as well as a clinical study at the neonatal intensive care unit with five new-born infants. Our study demonstrates that the respiratory rate computed by our system is highly correlated with the ground truth with a correlation coefficient of 0.938.