Prediction of variable forecast horizons with artificial neural networks by embedding the temporal resolution warping

Christoph Kellermann, Eric Neumann, J. Ostermann
{"title":"Prediction of variable forecast horizons with artificial neural networks by embedding the temporal resolution warping","authors":"Christoph Kellermann, Eric Neumann, J. Ostermann","doi":"10.1109/ICCAD55197.2022.9853884","DOIUrl":null,"url":null,"abstract":"Artificial neural networks (ANNs) have achieved many successes in time series forecasting. The shortcomings of them are a fixed forecast horizon and an increasing inaccuracy for multi-step forecast techniques to extend the forecast horizon. We embed temporal resolution warping into an ANN to provide a dynamic forecast horizon, excluding multi-step forecasts. The ANN is improved to recognize different representations of patterns by mapping spacial frequencies to new frequencies according to their relevance in time. We demonstrate the drastically improvement in forecast accuracy on different datasets. In comparison to the multi-step approach, we achieve a constant accuracy for extending the forecast horizon.","PeriodicalId":436377,"journal":{"name":"2022 International Conference on Control, Automation and Diagnosis (ICCAD)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Control, Automation and Diagnosis (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD55197.2022.9853884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks (ANNs) have achieved many successes in time series forecasting. The shortcomings of them are a fixed forecast horizon and an increasing inaccuracy for multi-step forecast techniques to extend the forecast horizon. We embed temporal resolution warping into an ANN to provide a dynamic forecast horizon, excluding multi-step forecasts. The ANN is improved to recognize different representations of patterns by mapping spacial frequencies to new frequencies according to their relevance in time. We demonstrate the drastically improvement in forecast accuracy on different datasets. In comparison to the multi-step approach, we achieve a constant accuracy for extending the forecast horizon.
嵌入时间分辨率翘曲的人工神经网络预测变预报层
人工神经网络(ann)在时间序列预测方面取得了许多成功。它们的缺点是预报范围固定,多步预报技术为了扩大预报范围,精度越来越高。我们将时间分辨率扭曲嵌入到人工神经网络中,以提供动态预测范围,不包括多步预测。通过将空间频率映射到新频率,根据频率在时间上的相关性对人工神经网络进行改进,以识别模式的不同表示。我们展示了在不同数据集上预测精度的显著提高。与多步法相比,我们在扩大预测范围方面取得了恒定的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信