Band Weighting Network for Hyperspectral Image Classification

Jing Wang, Jun Zhou
{"title":"Band Weighting Network for Hyperspectral Image Classification","authors":"Jing Wang, Jun Zhou","doi":"10.1109/DICTA.2018.8615876","DOIUrl":null,"url":null,"abstract":"Hyperspectral remote sensing images use hundreds of bands to describe the fine spectral information of the ground area. However, they inevitably contain a large amount of redundancy as well as noisy bands. Discovering the most informative bands and modeling the relationship among the bands are effective means to process the data and improve the performance of the subsequent classification task. Attention mechanism is used in computer vision and natural language processing to guide the algorithm towards the most relevant information in the data. In this paper, we propose a band weighting network by designing and integrating an attention module in the traditional convolutional neural network for hyperspectral image classification. Our proposed band weighting network has the capability to model the relationship among the bands and weight them according to their joint contribution to classification. One prominent feature of our proposed method is that it can assign different weights to different samples. The experimental results demonstrate the effectiveness and superiority of our approach.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Hyperspectral remote sensing images use hundreds of bands to describe the fine spectral information of the ground area. However, they inevitably contain a large amount of redundancy as well as noisy bands. Discovering the most informative bands and modeling the relationship among the bands are effective means to process the data and improve the performance of the subsequent classification task. Attention mechanism is used in computer vision and natural language processing to guide the algorithm towards the most relevant information in the data. In this paper, we propose a band weighting network by designing and integrating an attention module in the traditional convolutional neural network for hyperspectral image classification. Our proposed band weighting network has the capability to model the relationship among the bands and weight them according to their joint contribution to classification. One prominent feature of our proposed method is that it can assign different weights to different samples. The experimental results demonstrate the effectiveness and superiority of our approach.
高光谱图像分类的波段加权网络
高光谱遥感图像使用数百波段来描述地面区域的精细光谱信息。然而,它们不可避免地包含大量的冗余和噪声带。发现信息量最大的波段并对波段之间的关系进行建模是对数据进行处理和提高后续分类任务性能的有效手段。注意机制用于计算机视觉和自然语言处理,引导算法在数据中找到最相关的信息。本文通过在传统卷积神经网络中设计并集成关注模块,提出了一种用于高光谱图像分类的波段加权网络。我们提出的波段加权网络能够对波段之间的关系进行建模,并根据它们对分类的共同贡献对它们进行加权。我们提出的方法的一个突出特点是它可以为不同的样本分配不同的权重。实验结果证明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信