One v/s All SVM Implementation for Keystroke based Authentication System

Darpan Kumar Purwar, Deepika Vishwakarma, N. Singh, V. Khemchandani
{"title":"One v/s All SVM Implementation for Keystroke based Authentication System","authors":"Darpan Kumar Purwar, Deepika Vishwakarma, N. Singh, V. Khemchandani","doi":"10.1109/ISCON47742.2019.9036203","DOIUrl":null,"url":null,"abstract":"Authentication systems have laid the foundation for validating and securing user's identity. Due to increasing vulnerabilities, the traditional methods like passwords, PINs, tokens etc. cannot keep up with the challenges. The behavioural biometrics like Keystroke dynamics is used to authenticate a legitimate user through typing patterns. In this paper, we propose a machine learning approach to develop an authentication system that provides more robust user identity information using keystroke dynamics biometrics. One-v/s-all classification is applied to 51 users of CMU dataset. For optimization, the SVM classifier is used along with Grid Search for parameter tuning. Grid Search satisfies the goal of choosing the best kernel parameter pair. Experimental evaluation in a heterogeneous environment yields a false acceptance rate (FAR) of 0.2% and a false rejection rate (FRR) of 10.24%. The graphical representation of the result is expressed through ROC (Receiver Operating Characteristic) curve which shows the increased reliability of the system for authentication purpose.","PeriodicalId":124412,"journal":{"name":"2019 4th International Conference on Information Systems and Computer Networks (ISCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Information Systems and Computer Networks (ISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCON47742.2019.9036203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Authentication systems have laid the foundation for validating and securing user's identity. Due to increasing vulnerabilities, the traditional methods like passwords, PINs, tokens etc. cannot keep up with the challenges. The behavioural biometrics like Keystroke dynamics is used to authenticate a legitimate user through typing patterns. In this paper, we propose a machine learning approach to develop an authentication system that provides more robust user identity information using keystroke dynamics biometrics. One-v/s-all classification is applied to 51 users of CMU dataset. For optimization, the SVM classifier is used along with Grid Search for parameter tuning. Grid Search satisfies the goal of choosing the best kernel parameter pair. Experimental evaluation in a heterogeneous environment yields a false acceptance rate (FAR) of 0.2% and a false rejection rate (FRR) of 10.24%. The graphical representation of the result is expressed through ROC (Receiver Operating Characteristic) curve which shows the increased reliability of the system for authentication purpose.
基于击键认证系统的一v/s全支持向量机实现
身份验证系统为验证和保护用户身份奠定了基础。由于漏洞不断增加,传统的密码、pin、令牌等方法已经无法应对挑战。像击键动力学这样的行为生物识别技术用于通过输入模式验证合法用户。在本文中,我们提出了一种机器学习方法来开发一种身份验证系统,该系统使用击键动力学生物识别技术提供更强大的用户身份信息。对CMU数据集的51个用户进行了One-v/s-all分类。为了优化,SVM分类器与网格搜索一起用于参数调优。网格搜索满足选择最佳核参数对的目标。在异质环境下的实验评估产生0.2%的错误接受率(FAR)和10.24%的错误拒绝率(FRR)。结果的图形表示通过ROC(接收者工作特征)曲线表示,该曲线显示了系统用于认证目的的可靠性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信