Adapting the artificial bee colony metaheuristic to optimize image multilevel thresholding

Mariem Miledi, S. Dhouib
{"title":"Adapting the artificial bee colony metaheuristic to optimize image multilevel thresholding","authors":"Mariem Miledi, S. Dhouib","doi":"10.1109/WSCNIS.2015.7368298","DOIUrl":null,"url":null,"abstract":"The main idea of this paper is to adapt the Artificial Bee Colony metaheuristic to solve the problem of multilevel thresholding for image segmentation. More precisely, this method is exploited to optimize two maximizing functions namely the between-class variance (the Otsu's function) and the entropy thresholding (the Kapur's function). This leads, respectively, to two versions of the ABC metaheuristic: the ABC-Otsu and the ABC-Kapur. The robustness and proficiency of these two thresholding algorithms are demonstrated by applying them on a set of well-known benchmark images. Furthermore, the experimental results show the efficiency of these two thresholding methods.","PeriodicalId":253256,"journal":{"name":"2015 World Symposium on Computer Networks and Information Security (WSCNIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 World Symposium on Computer Networks and Information Security (WSCNIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSCNIS.2015.7368298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main idea of this paper is to adapt the Artificial Bee Colony metaheuristic to solve the problem of multilevel thresholding for image segmentation. More precisely, this method is exploited to optimize two maximizing functions namely the between-class variance (the Otsu's function) and the entropy thresholding (the Kapur's function). This leads, respectively, to two versions of the ABC metaheuristic: the ABC-Otsu and the ABC-Kapur. The robustness and proficiency of these two thresholding algorithms are demonstrated by applying them on a set of well-known benchmark images. Furthermore, the experimental results show the efficiency of these two thresholding methods.
采用人工蜂群元启发式算法优化图像多级阈值
本文的主要思想是采用人工蜂群元启发式算法解决图像分割中的多级阈值分割问题。更准确地说,这种方法被用来优化两个最大化函数,即类间方差(Otsu函数)和熵阈值(Kapur函数)。这分别导致了ABC元启发式的两个版本:ABC- otsu和ABC- kapur。通过在一组已知的基准图像上的应用,证明了这两种阈值算法的鲁棒性和熟练程度。实验结果表明了这两种阈值分割方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信