Architecture Exploration and Customization Tool of Deep Neural Networks for Edge Devices

Seungho Lim, Shin-Hyeok Kang, B. Ko, Jae-hee Roh, Chaemin Lim, Sang-Young Cho
{"title":"Architecture Exploration and Customization Tool of Deep Neural Networks for Edge Devices","authors":"Seungho Lim, Shin-Hyeok Kang, B. Ko, Jae-hee Roh, Chaemin Lim, Sang-Young Cho","doi":"10.1109/ICCE53296.2022.9730351","DOIUrl":null,"url":null,"abstract":"Recently, Deep Neural Network(DNN)-based applications are increasing in embedded edge devices. However, due to the high computational complexity, DNN has limitations in properly executing and optimizing on edge devices. As s result, DNN exploration framework is required to customize various DNN models for edge device from the software to hardware perspectives. In this paper, we provide a GUI-based framework for architectural exploration of DNN networks in edge devices. It provides software optimization such as quantization and pruning, as well as hardware performance analysis using Virtual Platform(VP)-based Deep Learning Accelerator(DLA).","PeriodicalId":350644,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics (ICCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE53296.2022.9730351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, Deep Neural Network(DNN)-based applications are increasing in embedded edge devices. However, due to the high computational complexity, DNN has limitations in properly executing and optimizing on edge devices. As s result, DNN exploration framework is required to customize various DNN models for edge device from the software to hardware perspectives. In this paper, we provide a GUI-based framework for architectural exploration of DNN networks in edge devices. It provides software optimization such as quantization and pruning, as well as hardware performance analysis using Virtual Platform(VP)-based Deep Learning Accelerator(DLA).
面向边缘设备的深度神经网络架构探索与定制工具
近年来,基于深度神经网络(DNN)的应用在嵌入式边缘设备中的应用越来越多。然而,由于计算复杂度高,深度神经网络在边缘设备上的正确执行和优化存在局限性。因此,需要DNN探索框架从软件到硬件的角度为边缘设备定制各种DNN模型。在本文中,我们提供了一个基于gui的框架,用于边缘设备中DNN网络的架构探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信