{"title":"Global workspace theory inspired architecture for autonomous structural health monitoring","authors":"M. Derriso, C. McCurry, M. DeSimio","doi":"10.1109/NAECON.2012.6531054","DOIUrl":null,"url":null,"abstract":"Structural health monitoring (SHM) systems provide automated assessments of structural health by processing data from sensors fastened to a structure. Most SHM research is focused on developing quick state assessments (i.e., reflexive techniques) using a form of pattern recognition. However, little attention has been given to developing a more `thoughtful', logic-based method for state assessments to enable operational-level decisions. Reflexive-based assessments are unreliable because they often cannot discriminate between changes due to structural damage and other variants (e.g., temperature). A new architecture is being proposed that combines reflexive and deliberative elements for enhanced state assessments and operational decisions. The architecture is demonstrated in the laboratory using a representative airframe component.","PeriodicalId":352567,"journal":{"name":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2012.6531054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Structural health monitoring (SHM) systems provide automated assessments of structural health by processing data from sensors fastened to a structure. Most SHM research is focused on developing quick state assessments (i.e., reflexive techniques) using a form of pattern recognition. However, little attention has been given to developing a more `thoughtful', logic-based method for state assessments to enable operational-level decisions. Reflexive-based assessments are unreliable because they often cannot discriminate between changes due to structural damage and other variants (e.g., temperature). A new architecture is being proposed that combines reflexive and deliberative elements for enhanced state assessments and operational decisions. The architecture is demonstrated in the laboratory using a representative airframe component.