Blind restoration of binary signals using a line spectrum fitting approach

J. Vía, I. Santamaría, M. Lázaro
{"title":"Blind restoration of binary signals using a line spectrum fitting approach","authors":"J. Vía, I. Santamaría, M. Lázaro","doi":"10.5281/ZENODO.38321","DOIUrl":null,"url":null,"abstract":"In this paper we present a new blind equalization algorithm that exploits the parallelism between the probability density function (PDF) of a random variable and a power spectral density (PSD). By using the PDF/PSD analogy, instead of minimizing the distance between the PDF of the input signal and the PDF at the output of the equalizer (an information-theoretic criterion), we solve a line spectrum fitting problem (a second-order statistics criterion) in a transformed domain. For a binary input, we use the fact that the ideal autocorrelation matrix in the transformed domain has rank 2 to develop batch and online projection-based algorithms. Numerical simulations demonstrate the performance of the proposed technique in comparison to batch cumulant-based methods as well as to conventional online blind algorithms such as the constant modulus algorithm (CMA).","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present a new blind equalization algorithm that exploits the parallelism between the probability density function (PDF) of a random variable and a power spectral density (PSD). By using the PDF/PSD analogy, instead of minimizing the distance between the PDF of the input signal and the PDF at the output of the equalizer (an information-theoretic criterion), we solve a line spectrum fitting problem (a second-order statistics criterion) in a transformed domain. For a binary input, we use the fact that the ideal autocorrelation matrix in the transformed domain has rank 2 to develop batch and online projection-based algorithms. Numerical simulations demonstrate the performance of the proposed technique in comparison to batch cumulant-based methods as well as to conventional online blind algorithms such as the constant modulus algorithm (CMA).
利用线谱拟合方法对二值信号进行盲恢复
本文利用随机变量的概率密度函数(PDF)和功率谱密度(PSD)之间的并行性,提出了一种新的盲均衡算法。通过使用PDF/PSD类比,我们解决了变换域中的线谱拟合问题(二阶统计准则),而不是最小化输入信号的PDF与均衡器输出处的PDF之间的距离(信息理论准则)。对于二值输入,我们利用变换域中理想自相关矩阵的秩为2的事实,开发了基于批处理和在线投影的算法。数值仿真结果表明,该方法与基于批量累积量的方法以及传统的在线盲算法(如恒模算法)相比,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信