{"title":"Implementation of the maximum power point tracking algorithm on indirect matrix converter controlled DFIG wind turbine","authors":"A. Khajeh, R. Ghazi, M. H. Abardeh","doi":"10.1109/ICREDG.2016.7875912","DOIUrl":null,"url":null,"abstract":"Nowadays, the doubly-fed induction generators (DFIG) based wind turbines (WT) are the dominant type of WT connected to power systems having MW power range. Traditionally the back-to-back converters are used to excite the rotor circuit of DFIG. In this paper, instead an Indirect Matrix Converter (IMC) is used to control the generator. Compared with back-to-back converters, IMCs have numerous advantages such as: higher level of robustness, reliability, reduced size and weight due to the absense of bulky electrolytic capacitor. Maximum Power Point Tracking (MPPT) is an important issue in wind turbines to capture the maximum power from the wind. A laboratory scale prototype of DFIG wind turbine controlled by the IMC is manufactured. Experimental results confirm the effectiveness of the proposed method.","PeriodicalId":207212,"journal":{"name":"2016 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICREDG.2016.7875912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Nowadays, the doubly-fed induction generators (DFIG) based wind turbines (WT) are the dominant type of WT connected to power systems having MW power range. Traditionally the back-to-back converters are used to excite the rotor circuit of DFIG. In this paper, instead an Indirect Matrix Converter (IMC) is used to control the generator. Compared with back-to-back converters, IMCs have numerous advantages such as: higher level of robustness, reliability, reduced size and weight due to the absense of bulky electrolytic capacitor. Maximum Power Point Tracking (MPPT) is an important issue in wind turbines to capture the maximum power from the wind. A laboratory scale prototype of DFIG wind turbine controlled by the IMC is manufactured. Experimental results confirm the effectiveness of the proposed method.