Generalized Universal Coding of Integers

Wei Yan, Sian-Jheng Lin
{"title":"Generalized Universal Coding of Integers","authors":"Wei Yan, Sian-Jheng Lin","doi":"10.1109/ITW48936.2021.9611436","DOIUrl":null,"url":null,"abstract":"Universal coding of integers (UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\\max\\{1, H( P)\\}$ is within a constant factor, where H(P) is the Shannon entropy of the decreasing probability distribution P. However, if we consider the ratio of the expected codeword length to H(P), the ratio tends to infinity by using UCI, when H(P) tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized UCI, such that the ratio of the expected codeword length to H(P) is within a constant factor K. The definition of generalized UCI is proposed, and then the coding structure of generalized UCI is introduced. Finally, the asymptotically optimal generalized UCI is presented.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Universal coding of integers (UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1, H( P)\}$ is within a constant factor, where H(P) is the Shannon entropy of the decreasing probability distribution P. However, if we consider the ratio of the expected codeword length to H(P), the ratio tends to infinity by using UCI, when H(P) tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized UCI, such that the ratio of the expected codeword length to H(P) is within a constant factor K. The definition of generalized UCI is proposed, and then the coding structure of generalized UCI is introduced. Finally, the asymptotically optimal generalized UCI is presented.
整数的广义通用编码
整数的通用编码(UCI)是一类变长编码,使得期望码字长度与$\max\{1, H(P) \}$的比值在一个常数因子内,其中H(P)是递减概率分布P的香农熵。然而,如果我们考虑期望码字长度与H(P)的比值,使用UCI,当H(P)趋于零时,比值趋于无穷大。为了解决这一问题,本文引入了一类编码,称为广义UCI,使得期望码字长度与H(P)的比值在常数因子k以内。提出了广义UCI的定义,并介绍了广义UCI的编码结构。最后,给出了渐近最优广义UCI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信