{"title":"Personalized Recommendation Based On Entity Attributes and Graph Features","authors":"Yi Zhu, Bingbing Dong, Zhiqing Sha","doi":"10.1109/ICKG52313.2021.00011","DOIUrl":null,"url":null,"abstract":"With the rapid increase in the amount of website data, it has been a more difficult task for users to get the infor-mation they are interested in. Personalized recommendation is an important bridge to find the information which users really need on the website. Many recent studies have introduced additional attribute information about users and/or items to the rating matrix for alleviating the problem of data sparsity. In order to make full use of the attribute information and scoring matrix, deep learning based recommendation methods are proposed, especially the autoencoder model has attracted much attention because of its strong ability to learn hidden features. However, most of the existing autoencoder- based models require that the dimension of the input layer is equal to the dimension of the output layer, which may increase model complexity and certain information loss when using attribute information. In addition, as users' awareness of privacy protection increases, user attribute information is difficult to obtain. To address the above problems, in this paper, we propose a hybrid personalized recommendation model, which uses a semi-autoencoder to jointly embed the item's score vector and internal graph features (short for Co-Agpre). Specifically, we regard the user-item historical interaction matrix as a bipartite graph, and the Laplacian of the user-item co-occurrence graph is utilized to obtain the graph features of the item for solving the problem of sparse attributes. Then a semi-autoencoder is introduced to learn the hidden features of the item and perform rating prediction. The proposed model can flexibly use information from different sources to reduce the complexity of the model. Experiments on two real-world datasets demonstrate the effectiveness of the proposed Co-Agpre compared with state-of-the-art methods.","PeriodicalId":174126,"journal":{"name":"2021 IEEE International Conference on Big Knowledge (ICBK)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICKG52313.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid increase in the amount of website data, it has been a more difficult task for users to get the infor-mation they are interested in. Personalized recommendation is an important bridge to find the information which users really need on the website. Many recent studies have introduced additional attribute information about users and/or items to the rating matrix for alleviating the problem of data sparsity. In order to make full use of the attribute information and scoring matrix, deep learning based recommendation methods are proposed, especially the autoencoder model has attracted much attention because of its strong ability to learn hidden features. However, most of the existing autoencoder- based models require that the dimension of the input layer is equal to the dimension of the output layer, which may increase model complexity and certain information loss when using attribute information. In addition, as users' awareness of privacy protection increases, user attribute information is difficult to obtain. To address the above problems, in this paper, we propose a hybrid personalized recommendation model, which uses a semi-autoencoder to jointly embed the item's score vector and internal graph features (short for Co-Agpre). Specifically, we regard the user-item historical interaction matrix as a bipartite graph, and the Laplacian of the user-item co-occurrence graph is utilized to obtain the graph features of the item for solving the problem of sparse attributes. Then a semi-autoencoder is introduced to learn the hidden features of the item and perform rating prediction. The proposed model can flexibly use information from different sources to reduce the complexity of the model. Experiments on two real-world datasets demonstrate the effectiveness of the proposed Co-Agpre compared with state-of-the-art methods.