{"title":"Differential Graded Algebras","authors":"L. Tu","doi":"10.23943/PRINCETON/9780691191751.003.0018","DOIUrl":null,"url":null,"abstract":"This chapter investigates differential graded algebras. Throughout the chapter, G will be a Lie group with Lie algebra g. On a manifold M, the de Rham complex is a differential graded algebra, a graded algebra that is also a differential complex. If the Lie group G acts smoothly on M, then the de Rham complex Ω(M) is more than a differential graded algebra. It has in addition two actions of the Lie algebra: interior multiplication and the Lie derivative. A differential graded algebra Ω with an interior multiplication and a Lie derivative satisfying Cartan's homotopy formula is called a g-differential graded algebra. To construct an algebraic model for equivariant cohomology, the chapter first constructs an algebraic model for the total space EG of the universal G-bundle. It is a g-differential graded algebra called the Weil algebra.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/PRINCETON/9780691191751.003.0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter investigates differential graded algebras. Throughout the chapter, G will be a Lie group with Lie algebra g. On a manifold M, the de Rham complex is a differential graded algebra, a graded algebra that is also a differential complex. If the Lie group G acts smoothly on M, then the de Rham complex Ω(M) is more than a differential graded algebra. It has in addition two actions of the Lie algebra: interior multiplication and the Lie derivative. A differential graded algebra Ω with an interior multiplication and a Lie derivative satisfying Cartan's homotopy formula is called a g-differential graded algebra. To construct an algebraic model for equivariant cohomology, the chapter first constructs an algebraic model for the total space EG of the universal G-bundle. It is a g-differential graded algebra called the Weil algebra.