A research based on adaptive genetic algorithm optimal embattling method

Ye-yang Pan, Jin-jie Yao
{"title":"A research based on adaptive genetic algorithm optimal embattling method","authors":"Ye-yang Pan, Jin-jie Yao","doi":"10.1109/ICIS.2014.6912105","DOIUrl":null,"url":null,"abstract":"In the high-speed flight target positioning, the base stations' locations influence the target localization accuracy directly. As the traditional base station layout positioning precision is not high, this paper proposes an optimal layout base station scheme which is bassd on adaptive genetic algorithm. The paper introduces the GA from the selection crossover and mutation operations, with the geometrical factor -GDOP as fitness function, end rsalizes the ground stations optimal layout. The simutulion results show that the scheme can optimize the base stations' locations, and improve the positioning precision of high speed targets.","PeriodicalId":237256,"journal":{"name":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACIS 13th International Conference on Computer and Information Science (ICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIS.2014.6912105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the high-speed flight target positioning, the base stations' locations influence the target localization accuracy directly. As the traditional base station layout positioning precision is not high, this paper proposes an optimal layout base station scheme which is bassd on adaptive genetic algorithm. The paper introduces the GA from the selection crossover and mutation operations, with the geometrical factor -GDOP as fitness function, end rsalizes the ground stations optimal layout. The simutulion results show that the scheme can optimize the base stations' locations, and improve the positioning precision of high speed targets.
一种基于自适应遗传算法的优化调度方法研究
在高速飞行目标定位中,基站的位置直接影响目标定位精度。针对传统基站布局定位精度不高的问题,提出了一种基于自适应遗传算法的基站优化布局方案。本文从选择交叉和变异操作引入遗传算法,以几何因子gdop作为适应度函数,最终实现地面站的最优布局。仿真结果表明,该方案能够优化基站位置,提高高速目标的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信