A deep convolutional neural wavelet network to supervised Arabic letter image classification

S. Hassairi, R. Ejbali, M. Zaied
{"title":"A deep convolutional neural wavelet network to supervised Arabic letter image classification","authors":"S. Hassairi, R. Ejbali, M. Zaied","doi":"10.1109/ISDA.2015.7489226","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach to supervised image classification is suggested. It's conducted by the combination of two techniques of learning: the wavelet network and the deep learning. This new approach consists of performing the classification of one class versus all the other classes of the dataset by the reconstruction of a convolutional deep neural wavelet network. This network is obtained using a series of stacked auto-encoders and a linear classifier. Finally, a local contrast normalization and an intelligent pooling are applied to our network. The experimental test of our approach performed on Arabic Printed Text Image (APTI) dataset demonstrates that our model is remarkably efficient for image classification compared to a known classifier.","PeriodicalId":196743,"journal":{"name":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2015.7489226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, a new approach to supervised image classification is suggested. It's conducted by the combination of two techniques of learning: the wavelet network and the deep learning. This new approach consists of performing the classification of one class versus all the other classes of the dataset by the reconstruction of a convolutional deep neural wavelet network. This network is obtained using a series of stacked auto-encoders and a linear classifier. Finally, a local contrast normalization and an intelligent pooling are applied to our network. The experimental test of our approach performed on Arabic Printed Text Image (APTI) dataset demonstrates that our model is remarkably efficient for image classification compared to a known classifier.
基于深度卷积神经小波网络的监督阿拉伯字母图像分类
本文提出了一种新的监督图像分类方法。它结合了两种学习技术:小波网络和深度学习。这种新方法包括通过重建卷积深度神经小波网络对数据集的一个类与所有其他类进行分类。该网络是使用一系列堆叠的自编码器和线性分类器得到的。最后,将局部对比归一化和智能池化应用到网络中。我们的方法在阿拉伯语印刷文本图像(APTI)数据集上进行的实验测试表明,与已知的分类器相比,我们的模型对图像分类非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信