{"title":"Synaptic clef segmentation method based on fractal dimension for ATUM-SEM image of mouse cortex","authors":"Chao Ma, Lijun Shen, Hao Deng, Jialin Li","doi":"10.1142/s0219691321500387","DOIUrl":null,"url":null,"abstract":"It is well known that neurons communicate through synapses in the nervous system, and the size, morphology, and connectivity of synapses determine the functional properties of the neural network. Therefore, synapses have always been one of the key objects of neuroscience. Due to the technical advance in electron microscope (EM), the physical structure of synapses can be observed at high resolution. Nevbarheless, to date, the automatic analysis of the synapse in EM images is still a challenging task. In this paper, we proposed a fractal dimension-based segmentation method for synaptic clef of mouse cortex on EM image stack. Our method does not require a lot of groundtruth to train the model, and shows better adaptive anti-noise performance. That should be ascribed to the stability of segmentation-related key parameters in the data from same tissue. In this way, we only need to give initial values, and then gradually adjust these key parameters. Experiments reveal that our method achieves the desired results, and reduces the time in artificial annotating, so that researchers can focus more on the analysis of segmentation results.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
It is well known that neurons communicate through synapses in the nervous system, and the size, morphology, and connectivity of synapses determine the functional properties of the neural network. Therefore, synapses have always been one of the key objects of neuroscience. Due to the technical advance in electron microscope (EM), the physical structure of synapses can be observed at high resolution. Nevbarheless, to date, the automatic analysis of the synapse in EM images is still a challenging task. In this paper, we proposed a fractal dimension-based segmentation method for synaptic clef of mouse cortex on EM image stack. Our method does not require a lot of groundtruth to train the model, and shows better adaptive anti-noise performance. That should be ascribed to the stability of segmentation-related key parameters in the data from same tissue. In this way, we only need to give initial values, and then gradually adjust these key parameters. Experiments reveal that our method achieves the desired results, and reduces the time in artificial annotating, so that researchers can focus more on the analysis of segmentation results.