{"title":"Independent component analysis for human epileptic spikes extraction","authors":"H. Yan, H. Chen, Y. Xia, Y. Lai, D. Zhou","doi":"10.1109/ICNIC.2005.1499850","DOIUrl":null,"url":null,"abstract":"In recent years, blind source separation (BSS) by independent component analysis (ICA) has been drawing much attention because of its potential applications in signal processing such as in speech recognition systems, telecommunication and medical signal processing. In this paper, two algorithms of independent component analysis (fixed-point ICA and natural gradient-flexible ICA) were adopted to extract human epileptic spikes from interferential signals. Experiment results show that epileptic spikes can be extracted from noise successfully. The kurtosis of the epileptic component signal separated is much better than that of other noisy signals. It shows that ICA is an effective tool to extract epileptic spikes from patients' electroencephalogram and shows promising application to assist physicians to diagnose epilepsy and estimate the epileptogenic region in clinic.","PeriodicalId":169717,"journal":{"name":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIC.2005.1499850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In recent years, blind source separation (BSS) by independent component analysis (ICA) has been drawing much attention because of its potential applications in signal processing such as in speech recognition systems, telecommunication and medical signal processing. In this paper, two algorithms of independent component analysis (fixed-point ICA and natural gradient-flexible ICA) were adopted to extract human epileptic spikes from interferential signals. Experiment results show that epileptic spikes can be extracted from noise successfully. The kurtosis of the epileptic component signal separated is much better than that of other noisy signals. It shows that ICA is an effective tool to extract epileptic spikes from patients' electroencephalogram and shows promising application to assist physicians to diagnose epilepsy and estimate the epileptogenic region in clinic.