Robust Extraction of Optic Flow Differentials for Surface Reconstruction

S. Fu, P. Kovesi
{"title":"Robust Extraction of Optic Flow Differentials for Surface Reconstruction","authors":"S. Fu, P. Kovesi","doi":"10.1109/DICTA.2010.85","DOIUrl":null,"url":null,"abstract":"The first-order differential invariants of optic flow, namely divergence, curl, and deformation, provide useful shape indicators of objects passing through view. However, as differential quantities these are often difficult to extract reliably. In this paper we present a filter-based method for computing these invariants with sufficient accuracy to permit the construction of a partial scene model. The noise robustness of our method is analysed using both synthetic and real world images. We also demonstrate that the deformation of a dense optic flow field encodes sufficient information to reliably estimate surface orientations if viewer ego-motion is purely translational.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The first-order differential invariants of optic flow, namely divergence, curl, and deformation, provide useful shape indicators of objects passing through view. However, as differential quantities these are often difficult to extract reliably. In this paper we present a filter-based method for computing these invariants with sufficient accuracy to permit the construction of a partial scene model. The noise robustness of our method is analysed using both synthetic and real world images. We also demonstrate that the deformation of a dense optic flow field encodes sufficient information to reliably estimate surface orientations if viewer ego-motion is purely translational.
曲面重建中光流微分的鲁棒提取
光流的一阶微分不变量,即散度、旋度和变形,提供了通过视图的物体的有用形状指标。然而,作为微分量,这些通常难以可靠地提取。在本文中,我们提出了一种基于滤波器的方法,以足够的精度计算这些不变量,以允许构建部分场景模型。用合成图像和真实世界图像分析了我们方法的噪声鲁棒性。我们还证明了密集光流场的变形编码了足够的信息来可靠地估计表面方向,如果观察者的自我运动是纯粹的平移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信