Research of Face Recognition Based on Locally Linear Embedding

Cuihong Zhou, Gelan Yang
{"title":"Research of Face Recognition Based on Locally Linear Embedding","authors":"Cuihong Zhou, Gelan Yang","doi":"10.1109/ICCEE.2009.130","DOIUrl":null,"url":null,"abstract":"Image data taken with various capturing devices are usually multidimensional and therefore they are not very suitable for accurate classification normally expecting to operate only on a small set of relevant features. Locally Linear Embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. In this paper, novel Local linear embedding for face classification is proposed. We modify the LLE algorithm by preserving more geometrical knowledge of the high-dimensional data, then combining with simple classifiers such as the nearest mean classifier. Experimental simulations are shown to yield remarkably good classification results in high dimension face image sequence.","PeriodicalId":343870,"journal":{"name":"2009 Second International Conference on Computer and Electrical Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2009.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image data taken with various capturing devices are usually multidimensional and therefore they are not very suitable for accurate classification normally expecting to operate only on a small set of relevant features. Locally Linear Embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. In this paper, novel Local linear embedding for face classification is proposed. We modify the LLE algorithm by preserving more geometrical knowledge of the high-dimensional data, then combining with simple classifiers such as the nearest mean classifier. Experimental simulations are shown to yield remarkably good classification results in high dimension face image sequence.
基于局部线性嵌入的人脸识别研究
使用各种捕获设备拍摄的图像数据通常是多维的,因此它们不太适合用于准确分类,通常期望仅对一小部分相关特征进行操作。局部线性嵌入是探索高维数据内在特征的一种有效的非线性降维方法。本文提出了一种新的局部线性嵌入人脸分类方法。我们通过保留更多高维数据的几何知识来改进LLE算法,然后结合最接近均值分类器等简单分类器。实验仿真结果表明,该方法对高维人脸图像序列具有很好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信