Distance-aware Hierarchical Data-collecting Path Selection for Mobile Sink in Sparse WSNs

Gauransh Kalla, A. P. Mazumdar, D. K. Tyagi, Abhishek Narwaria
{"title":"Distance-aware Hierarchical Data-collecting Path Selection for Mobile Sink in Sparse WSNs","authors":"Gauransh Kalla, A. P. Mazumdar, D. K. Tyagi, Abhishek Narwaria","doi":"10.1109/WF-IoT54382.2022.10152025","DOIUrl":null,"url":null,"abstract":"A Mobile Sink (MS) is a device that can be used to collect data from sparsely deployed sensor nodes by visiting the sensor nodes in close proximity. Various existing schemes face the problem of bottlenecks during data transmission to the MS as only a few sensor nodes are chosen to transmit data. In this article, we propose the Distance-aware Hierarchical Data-collecting Path Selection (DHDP) algorithm that aims to determine optimal Rendezvous Points (RPs) using the Range bound Hierarchical Agglomerative Clustering (R-HAC) and check the cluster's quality based on Average Silhouette Width (ASW). Further, we exploit Ant Colony Optimization (ACO) to determine the optimal path for the mobile sink to follow. To reduce the energy consumption of sensor nodes, we appoint Collection Agents (CA) to transmit data directly to the mobile sink when the sensor node comes within transmission range. The extensive simulation indicates significant improvements in network lifetime and end-to-end data delivery latency compared to the state-of-the-art methods in sparse networks.","PeriodicalId":176605,"journal":{"name":"2022 IEEE 8th World Forum on Internet of Things (WF-IoT)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th World Forum on Internet of Things (WF-IoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WF-IoT54382.2022.10152025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Mobile Sink (MS) is a device that can be used to collect data from sparsely deployed sensor nodes by visiting the sensor nodes in close proximity. Various existing schemes face the problem of bottlenecks during data transmission to the MS as only a few sensor nodes are chosen to transmit data. In this article, we propose the Distance-aware Hierarchical Data-collecting Path Selection (DHDP) algorithm that aims to determine optimal Rendezvous Points (RPs) using the Range bound Hierarchical Agglomerative Clustering (R-HAC) and check the cluster's quality based on Average Silhouette Width (ASW). Further, we exploit Ant Colony Optimization (ACO) to determine the optimal path for the mobile sink to follow. To reduce the energy consumption of sensor nodes, we appoint Collection Agents (CA) to transmit data directly to the mobile sink when the sensor node comes within transmission range. The extensive simulation indicates significant improvements in network lifetime and end-to-end data delivery latency compared to the state-of-the-art methods in sparse networks.
稀疏WSNs中移动汇聚的距离感知分层数据采集路径选择
移动Sink (Mobile Sink, MS)是一种通过访问距离较近的传感器节点,从稀疏部署的传感器节点收集数据的设备。现有的各种方案由于只选择少数传感器节点来传输数据,在向MS传输数据时面临瓶颈问题。在本文中,我们提出了距离感知分层数据收集路径选择(DHDP)算法,该算法旨在使用范围限定分层聚类(R-HAC)确定最佳交会点(rp),并基于平均轮廓宽度(ASW)检查聚类的质量。此外,我们利用蚁群优化(ACO)来确定移动sink遵循的最优路径。为了减少传感器节点的能量消耗,当传感器节点进入传输范围时,我们指定收集代理(CA)将数据直接传输到移动接收器。广泛的模拟表明,与稀疏网络中最先进的方法相比,网络寿命和端到端数据传输延迟有了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信