Conditional Entropy Based Retrieval Model in Patient-Carer Conversational Cases

M. Pavlidou, Antonis Billis, N. D. Hasanagas, C. Bratsas, Ioannis Antoniou, P. Bamidis
{"title":"Conditional Entropy Based Retrieval Model in Patient-Carer Conversational Cases","authors":"M. Pavlidou, Antonis Billis, N. D. Hasanagas, C. Bratsas, Ioannis Antoniou, P. Bamidis","doi":"10.1109/CBMS.2017.145","DOIUrl":null,"url":null,"abstract":"Bot Assistants can be an efficient and low-cost solution to Patient Care. One important aspect of Assistant Bots is successful Communication and Socialization with the patient. A new Conditional Entropy Retrieval Based model is proposed and also an Attitude Modeling based on Popitz Powers. The algorithm successfully retrieves the suitable answer with a high success rate in the patient-Bot Assistant dialogue interaction. Moreover, the Conditional Entropy Model and the Popitz Attitude Model are combined in order to identify Attitude Changes in Dialogue Interactions between patients and doctors.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Bot Assistants can be an efficient and low-cost solution to Patient Care. One important aspect of Assistant Bots is successful Communication and Socialization with the patient. A new Conditional Entropy Retrieval Based model is proposed and also an Attitude Modeling based on Popitz Powers. The algorithm successfully retrieves the suitable answer with a high success rate in the patient-Bot Assistant dialogue interaction. Moreover, the Conditional Entropy Model and the Popitz Attitude Model are combined in order to identify Attitude Changes in Dialogue Interactions between patients and doctors.
基于条件熵的医患对话案例检索模型
机器人助手是一种高效、低成本的病人护理解决方案。助理机器人的一个重要方面是与患者成功的沟通和社交。提出了一种新的基于条件熵检索的姿态建模方法和基于Popitz幂的姿态建模方法。该算法在患者与机器人助手的对话交互中以较高的成功率成功检索到合适的答案。并结合条件熵模型和Popitz态度模型来识别医患对话互动中的态度变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信