An FPGA architecture for the Pagerank eigenvector problem

Séamas McGettrick, D. Geraghty, Ciarán McElroy
{"title":"An FPGA architecture for the Pagerank eigenvector problem","authors":"Séamas McGettrick, D. Geraghty, Ciarán McElroy","doi":"10.1109/FPL.2008.4629999","DOIUrl":null,"url":null,"abstract":"Googlepsilas PageRank (PR) eigenvector problem is the worldpsilas largest matrix calculation. The algorithm is dominated by Sparse Matrix by Vector Multiplication (SMVM) where the matrix is very sparse, unsymmetrical and unstructured. The computation presents a serious challenge to general-purpose processors (GPP) and the result is a very lengthy computation time. In this paper, we present an architecture for solving the PR eigenvalue problem on the Virtex 5 FPGA. The architecture is optimised to take advantage of the unique features of the PR algorithm and FPGA technology. Performance benchmarks are presented for a selection of real Internet link matrices. Finally these results are compared with equivalent GPP implementations of the PR algorithm.","PeriodicalId":137963,"journal":{"name":"2008 International Conference on Field Programmable Logic and Applications","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Field Programmable Logic and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL.2008.4629999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Googlepsilas PageRank (PR) eigenvector problem is the worldpsilas largest matrix calculation. The algorithm is dominated by Sparse Matrix by Vector Multiplication (SMVM) where the matrix is very sparse, unsymmetrical and unstructured. The computation presents a serious challenge to general-purpose processors (GPP) and the result is a very lengthy computation time. In this paper, we present an architecture for solving the PR eigenvalue problem on the Virtex 5 FPGA. The architecture is optimised to take advantage of the unique features of the PR algorithm and FPGA technology. Performance benchmarks are presented for a selection of real Internet link matrices. Finally these results are compared with equivalent GPP implementations of the PR algorithm.
Pagerank特征向量问题的FPGA架构
google PageRank (PR)特征向量问题是世界上最大的矩阵计算问题。该算法以稀疏矩阵矢量乘法(SMVM)算法为主,该算法的矩阵非常稀疏、不对称和非结构化。这种计算对通用处理器(GPP)提出了严峻的挑战,其结果是计算时间非常长。在本文中,我们提出了一种在Virtex 5 FPGA上解决PR特征值问题的架构。该架构经过优化,充分利用了PR算法和FPGA技术的独特特性。本文给出了一些实际互联网链路矩阵的性能基准。最后,将这些结果与PR算法的等效GPP实现进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信