Detecting Link Spam Using Temporal Information

Guoyang Shen, Bin Gao, Tie-Yan Liu, Guang Feng, Shiji Song, Hang Li
{"title":"Detecting Link Spam Using Temporal Information","authors":"Guoyang Shen, Bin Gao, Tie-Yan Liu, Guang Feng, Shiji Song, Hang Li","doi":"10.1109/ICDM.2006.51","DOIUrl":null,"url":null,"abstract":"How to effectively protect against spam on search ranking results is an important issue for contemporary web search engines. This paper addresses the problem of combating one major type of web spam: 'link spam.' Most of the previous work on anti link spam managed to make use of one snapshot of web data to detect spam, and thus it did not take advantage of the fact that link spam tends to result in drastic changes of links in a short time period. To overcome the shortcoming, this paper proposes using temporal information on links in detection of link spam, as well as other information. Specifically, it defines temporal features such as in-link growth rate (IGR) and in-link death rate (IDR) in a spam classification model (i.e., SVM). Experimental results on web domain graph data show that link spam can be successfully detected with the proposed method.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

Abstract

How to effectively protect against spam on search ranking results is an important issue for contemporary web search engines. This paper addresses the problem of combating one major type of web spam: 'link spam.' Most of the previous work on anti link spam managed to make use of one snapshot of web data to detect spam, and thus it did not take advantage of the fact that link spam tends to result in drastic changes of links in a short time period. To overcome the shortcoming, this paper proposes using temporal information on links in detection of link spam, as well as other information. Specifically, it defines temporal features such as in-link growth rate (IGR) and in-link death rate (IDR) in a spam classification model (i.e., SVM). Experimental results on web domain graph data show that link spam can be successfully detected with the proposed method.
利用时间信息检测垃圾链接
如何有效地防止搜索排名结果中的垃圾邮件是当代网络搜索引擎面临的一个重要问题。本文解决了打击一种主要类型的网络垃圾邮件的问题:“链接垃圾邮件”。以前的大多数反链接垃圾邮件的工作都是设法利用一个web数据快照来检测垃圾邮件,因此它没有利用链接垃圾邮件往往会导致链接在短时间内发生剧烈变化的事实。为了克服这一缺点,本文提出利用链接的时间信息以及其他信息来检测垃圾链接。具体来说,它定义了垃圾邮件分类模型(即SVM)中的链接内增长率(IGR)和链接内死亡率(IDR)等时间特征。在web域图数据上的实验结果表明,该方法可以成功地检测出垃圾链接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信