A feature transformation method using genetic programming for two-class classification

T. Hiroyasu, T. Shiraishi, Tomoya Yoshida, U. Yamamoto
{"title":"A feature transformation method using genetic programming for two-class classification","authors":"T. Hiroyasu, T. Shiraishi, Tomoya Yoshida, U. Yamamoto","doi":"10.1109/CIDM.2014.7008673","DOIUrl":null,"url":null,"abstract":"In this paper, a feature transformation method for two-class classification using genetic programming (GP) is proposed. GP derives a transformation formula to improve the classification accuracy of Support Vector Machine, SVM. In this paper, we propose a weight function to evaluate converted feature space and the proposed function is used to evaluate the function of GP. In the proposed function, the ideal two-class distribution of items is assumed and the distance between the actual and ideal distributions is calculated. The weight is imposed to these distances. To examine the effectiveness of the proposed function, a numerical experiment was performed. In the experiment, as the result, the classification accuracy of the proposed method showed the better result than that of the existing method.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"25 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a feature transformation method for two-class classification using genetic programming (GP) is proposed. GP derives a transformation formula to improve the classification accuracy of Support Vector Machine, SVM. In this paper, we propose a weight function to evaluate converted feature space and the proposed function is used to evaluate the function of GP. In the proposed function, the ideal two-class distribution of items is assumed and the distance between the actual and ideal distributions is calculated. The weight is imposed to these distances. To examine the effectiveness of the proposed function, a numerical experiment was performed. In the experiment, as the result, the classification accuracy of the proposed method showed the better result than that of the existing method.
基于遗传规划的两类分类特征变换方法
提出了一种基于遗传规划(GP)的两类分类特征变换方法。为了提高支持向量机的分类精度,GP导出了一种转换公式。在本文中,我们提出了一个权重函数来评估转换后的特征空间,并使用该权重函数来评估GP函数。在该函数中,假设项目的理想两类分布,并计算实际分布与理想分布之间的距离。重量加在这些距离上。为了验证所提函数的有效性,进行了数值实验。实验结果表明,本文方法的分类精度优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信