Induction motor parameter estimation from manufacturer data using genetic algorithms and heuristic relationships

S. C. Lima, C. A. C. Wengerkievicz, N. Batistela, N. Sadowski, P. da Silva, Anderson Y. Beltrame
{"title":"Induction motor parameter estimation from manufacturer data using genetic algorithms and heuristic relationships","authors":"S. C. Lima, C. A. C. Wengerkievicz, N. Batistela, N. Sadowski, P. da Silva, Anderson Y. Beltrame","doi":"10.1109/COBEP.2017.8257400","DOIUrl":null,"url":null,"abstract":"This paper presents a methodology based on genetic algorithms and heuristic relationships for the determination of all parameters of the equivalent circuit of induction motors from manufacturer catalog data. The approach employs the complete steady state model of the motor and aims at the calculation of efficiency, power factor, current, torque and other quantities at any load. The methodology consists of a first stage, in which a search space for the genetic algorithm is determined, and a second stage in which the circuit parameters and auxiliary slip values are determined. Three different types of motors were investigated, with pole number and power varying from 2 to 6 and from 10 hp to 100 hp, respectively. The accuracy is verified based on deviation from catalog data, reference parameter values obtained experimentally and experimental data. Results indicate that the proposed methodology is capable of finding parameter values which fit the catalog data, although the inaccuracy of these data causes deviation from reference parameter values. The used heuristics is shown to reduce the deviation of less sensitive parameters.","PeriodicalId":375493,"journal":{"name":"2017 Brazilian Power Electronics Conference (COBEP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Brazilian Power Electronics Conference (COBEP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COBEP.2017.8257400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a methodology based on genetic algorithms and heuristic relationships for the determination of all parameters of the equivalent circuit of induction motors from manufacturer catalog data. The approach employs the complete steady state model of the motor and aims at the calculation of efficiency, power factor, current, torque and other quantities at any load. The methodology consists of a first stage, in which a search space for the genetic algorithm is determined, and a second stage in which the circuit parameters and auxiliary slip values are determined. Three different types of motors were investigated, with pole number and power varying from 2 to 6 and from 10 hp to 100 hp, respectively. The accuracy is verified based on deviation from catalog data, reference parameter values obtained experimentally and experimental data. Results indicate that the proposed methodology is capable of finding parameter values which fit the catalog data, although the inaccuracy of these data causes deviation from reference parameter values. The used heuristics is shown to reduce the deviation of less sensitive parameters.
利用遗传算法和启发式关系从制造商数据中估计感应电机参数
本文提出了一种基于遗传算法和启发式关系的方法,用于从制造商目录数据中确定感应电动机等效电路的所有参数。该方法采用电机的完全稳态模型,旨在计算任意负载下的效率、功率因数、电流、转矩等参数。该方法包括确定遗传算法搜索空间的第一阶段和确定电路参数和辅助转差值的第二阶段。研究了三种不同类型的电机,其极数和功率分别从2到6和10到100 hp。通过与目录数据的偏差、实验得到的参考参数值和实验数据验证了该方法的准确性。结果表明,所提出的方法能够找到适合目录数据的参数值,尽管这些数据的不准确性导致与参考参数值的偏差。所使用的启发式方法可以减少不敏感参数的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信