A new wavelet hard threshold to process image with strong Gaussian Noise

Cheng Chen, Ningning Zhou
{"title":"A new wavelet hard threshold to process image with strong Gaussian Noise","authors":"Cheng Chen, Ningning Zhou","doi":"10.1109/ICACI.2012.6463226","DOIUrl":null,"url":null,"abstract":"Wavelet transform method has been widely used in image filtering, the wavelet threshold de-noising method can treat Gaussian noise with randomness well. This paper proposes that after the wavelet transform the high frequency coefficients need a more accurate processing, And the classical hard threshold method has been improved by introducing the measure of medium truth scale. The new method can effectively handle strong Gaussian noise with larger variance through theoretical analysis and experimental simulation, and get a fine recovery image. It also provides a new approach for wavelet de-noising.","PeriodicalId":404759,"journal":{"name":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Advanced Computational Intelligence (ICACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACI.2012.6463226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Wavelet transform method has been widely used in image filtering, the wavelet threshold de-noising method can treat Gaussian noise with randomness well. This paper proposes that after the wavelet transform the high frequency coefficients need a more accurate processing, And the classical hard threshold method has been improved by introducing the measure of medium truth scale. The new method can effectively handle strong Gaussian noise with larger variance through theoretical analysis and experimental simulation, and get a fine recovery image. It also provides a new approach for wavelet de-noising.
一种新的小波硬阈值处理强高斯噪声图像
小波变换方法在图像滤波中得到了广泛的应用,小波阈值去噪方法可以很好地处理具有随机性的高斯噪声。本文提出对小波变换后的高频系数进行更精确的处理,并通过引入中真值尺度对经典硬阈值法进行改进。通过理论分析和实验仿真,该方法能有效处理方差较大的强高斯噪声,得到较好的恢复图像。为小波去噪提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信