Multi-Module Recurrent Neural Networks with Transfer Learning

Filip Skurniak, M. Janicka, A. Wawer
{"title":"Multi-Module Recurrent Neural Networks with Transfer Learning","authors":"Filip Skurniak, M. Janicka, A. Wawer","doi":"10.18653/v1/W18-0917","DOIUrl":null,"url":null,"abstract":"This paper describes multiple solutions designed and tested for the problem of word-level metaphor detection. The proposed systems are all based on variants of recurrent neural network architectures. Specifically, we explore multiple sources of information: pre-trained word embeddings (Glove), a dictionary of language concreteness and a transfer learning scenario based on the states of an encoder network from neural network machine translation system. One of the architectures is based on combining all three systems: (1) Neural CRF (Conditional Random Fields), trained directly on the metaphor data set; (2) Neural Machine Translation encoder of a transfer learning scenario; (3) a neural network used to predict final labels, trained directly on the metaphor data set. Our results vary between test sets: Neural CRF standalone is the best one on submission data, while combined system scores the highest on a test subset randomly selected from training data.","PeriodicalId":190853,"journal":{"name":"Fig-Lang@NAACL-HLT","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fig-Lang@NAACL-HLT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-0917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes multiple solutions designed and tested for the problem of word-level metaphor detection. The proposed systems are all based on variants of recurrent neural network architectures. Specifically, we explore multiple sources of information: pre-trained word embeddings (Glove), a dictionary of language concreteness and a transfer learning scenario based on the states of an encoder network from neural network machine translation system. One of the architectures is based on combining all three systems: (1) Neural CRF (Conditional Random Fields), trained directly on the metaphor data set; (2) Neural Machine Translation encoder of a transfer learning scenario; (3) a neural network used to predict final labels, trained directly on the metaphor data set. Our results vary between test sets: Neural CRF standalone is the best one on submission data, while combined system scores the highest on a test subset randomly selected from training data.
具有迁移学习的多模块递归神经网络
本文描述了针对词级隐喻检测问题设计和测试的多种解决方案。所提出的系统都是基于递归神经网络架构的变体。具体来说,我们探索了多个信息源:预训练词嵌入(Glove)、语言具体性词典和基于神经网络机器翻译系统编码器网络状态的迁移学习场景。其中一种架构是基于这三个系统的结合:(1)神经CRF(条件随机场),直接在隐喻数据集上训练;(2)基于迁移学习场景的神经机器翻译编码器;(3)直接在隐喻数据集上训练用于预测最终标签的神经网络。我们的结果在不同的测试集之间有所不同:神经CRF独立系统在提交数据上是最好的,而组合系统在从训练数据中随机选择的测试子集上得分最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信