Gastrointestinal image classification based on VGG16 and transfer learning

Benkessirat Amina, B. Nadjia, Beghdadi Azeddine
{"title":"Gastrointestinal image classification based on VGG16 and transfer learning","authors":"Benkessirat Amina, B. Nadjia, Beghdadi Azeddine","doi":"10.1109/ICISAT54145.2021.9678481","DOIUrl":null,"url":null,"abstract":"Investigational procedures and medical diagnosis can be greatly improved by opting for detecting automatically abnormalities and anatomical landmarks in medical images. However, this remains a challenging task and still unexplored field. This paper aims to investigate the capabilities of a pretrained deep convolutional neural network VGG-16 model for images categorization with transfer learning containing anatomical landmarks, pathological finding and endoscopic procedures. Data augmentation is also performed to highlight the importance of data size for deep models. The accuracies achieved before and after data augmentation are 96.9% and 98.8% respectively.","PeriodicalId":112478,"journal":{"name":"2021 International Conference on Information Systems and Advanced Technologies (ICISAT)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Systems and Advanced Technologies (ICISAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISAT54145.2021.9678481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Investigational procedures and medical diagnosis can be greatly improved by opting for detecting automatically abnormalities and anatomical landmarks in medical images. However, this remains a challenging task and still unexplored field. This paper aims to investigate the capabilities of a pretrained deep convolutional neural network VGG-16 model for images categorization with transfer learning containing anatomical landmarks, pathological finding and endoscopic procedures. Data augmentation is also performed to highlight the importance of data size for deep models. The accuracies achieved before and after data augmentation are 96.9% and 98.8% respectively.
基于VGG16和迁移学习的胃肠图像分类
通过选择自动检测医学图像中的异常和解剖标志,可以大大改善调查程序和医学诊断。然而,这仍然是一个具有挑战性的任务,仍然是一个未开发的领域。本文旨在研究预训练的深度卷积神经网络VGG-16模型在包含解剖标志、病理发现和内窥镜检查过程的图像分类中的迁移学习能力。还执行了数据增强,以突出数据大小对深度模型的重要性。数据增强前后的准确率分别为96.9%和98.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信