Music Generation using Deep Generative Modelling

Advait Maduskar, Aniket Ladukar, Shubhankar Gore, Neha Patwari
{"title":"Music Generation using Deep Generative Modelling","authors":"Advait Maduskar, Aniket Ladukar, Shubhankar Gore, Neha Patwari","doi":"10.1109/ICCDW45521.2020.9318683","DOIUrl":null,"url":null,"abstract":"Efficient synthesis of musical sequences is a challenging task from a machine learning perspective, as human perception is aware of the global context to shorter sequences as well of audio waveforms on a smaller scale. Autoregressive models such as WaveNet use iterative subsampling to generate short sequences that are a result of a localized modeling process but lacking in overall global structures. In juxtaposition, Generative Adversarial Networks (GANs) are effective for modeling globally coherent sequence structures, but struggle to generate localized sequences. Through this project, we aim to propose a system that combines the random subsampling approach of GANs with a recurrent autoregressive model. Such a model will help to model coherent musical structures effectively on both, global and local levels.","PeriodicalId":282429,"journal":{"name":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","volume":"2673 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDW45521.2020.9318683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Efficient synthesis of musical sequences is a challenging task from a machine learning perspective, as human perception is aware of the global context to shorter sequences as well of audio waveforms on a smaller scale. Autoregressive models such as WaveNet use iterative subsampling to generate short sequences that are a result of a localized modeling process but lacking in overall global structures. In juxtaposition, Generative Adversarial Networks (GANs) are effective for modeling globally coherent sequence structures, but struggle to generate localized sequences. Through this project, we aim to propose a system that combines the random subsampling approach of GANs with a recurrent autoregressive model. Such a model will help to model coherent musical structures effectively on both, global and local levels.
使用深度生成建模的音乐生成
从机器学习的角度来看,音乐序列的有效合成是一项具有挑战性的任务,因为人类的感知意识到较短序列的全局背景以及较小规模的音频波形。自回归模型(如WaveNet)使用迭代子采样来生成短序列,这些序列是局部建模过程的结果,但缺乏整体的全局结构。同时,生成对抗网络(GANs)对全局连贯序列结构建模有效,但难以生成局部序列。通过这个项目,我们的目标是提出一个将gan的随机子抽样方法与递归自回归模型相结合的系统。这样的模型将有助于在全球和地方层面上有效地建立连贯的音乐结构模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信