Adaptive Multi-levels Dictionaries and Singular Value Decomposition Techniques for Autonomic Problem Determination

H. Chan, T. Kwok
{"title":"Adaptive Multi-levels Dictionaries and Singular Value Decomposition Techniques for Autonomic Problem Determination","authors":"H. Chan, T. Kwok","doi":"10.1109/ICAC.2007.4","DOIUrl":null,"url":null,"abstract":"An autonomic problem determination system can adapt to changing environments, react to existing or new error condition and predict possible problems. In this report, we propose such a system using dynamic and adaptive multi-levels dictionaries and \"singular value decomposition techniques\" (SVD). Compared to standard SVD, our system uses an iterative method that enables dynamic interaction between events and the current dictionaries with its entries being updated continuously to reflect relative importance of each event, thereby accelerating its convergence. The system captures knowledge in a hierarchical form for complex knowledge representation. It does not require a formal knowledge model or intensive training by examples. It is efficient with sufficient accuracy for autonomic problem determination.","PeriodicalId":179923,"journal":{"name":"Fourth International Conference on Autonomic Computing (ICAC'07)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on Autonomic Computing (ICAC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2007.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An autonomic problem determination system can adapt to changing environments, react to existing or new error condition and predict possible problems. In this report, we propose such a system using dynamic and adaptive multi-levels dictionaries and "singular value decomposition techniques" (SVD). Compared to standard SVD, our system uses an iterative method that enables dynamic interaction between events and the current dictionaries with its entries being updated continuously to reflect relative importance of each event, thereby accelerating its convergence. The system captures knowledge in a hierarchical form for complex knowledge representation. It does not require a formal knowledge model or intensive training by examples. It is efficient with sufficient accuracy for autonomic problem determination.
自主问题确定的自适应多层字典和奇异值分解技术
自主问题确定系统能够适应不断变化的环境,对现有的或新的错误条件作出反应,并预测可能出现的问题。在这篇报告中,我们提出了这样一个系统,使用动态和自适应多层字典和“奇异值分解技术”(SVD)。与标准SVD相比,我们的系统使用迭代方法,支持事件和当前字典之间的动态交互,其条目不断更新,以反映每个事件的相对重要性,从而加速其收敛。该系统以层次化的形式获取知识,用于复杂的知识表示。它不需要一个正式的知识模型或密集的实例训练。对于自主问题的确定,该方法具有较高的效率和足够的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信