Estimation of Air Temperature from FY-4A AGRI Data: A Comparison of Different Machine Learning Algorithm

Ke Zhou, Hailei Liu, Xiaobo Deng, Qihong Huang
{"title":"Estimation of Air Temperature from FY-4A AGRI Data: A Comparison of Different Machine Learning Algorithm","authors":"Ke Zhou, Hailei Liu, Xiaobo Deng, Qihong Huang","doi":"10.1109/ICMO49322.2019.9025982","DOIUrl":null,"url":null,"abstract":"Air Temperature(Tair),a basic meteorological observation element, is an essential meteorological parameter in physiology, hydrology, meteorology, environment, etc. The Tair data ,which is characterized by high precision, is of great significance for the greenhouse effect, land surface processes and so on. With the advent of high performing imaging instrument onboard geostationary satellites such as Advanced Geostationary Radiation Imager(AGRI) onboard FY-4A of China, it provides high spatial and temporal resolution data. To estimate Tair from such high-resolution data, this paper presents an effective method for estimation Tair based on AGRI data. Different machine learning algorithms–-random forest (RF), k-nearest neighbors(KNN) and extreme gradient boosting(XGB)–-are evaluated for estimation of Tair under clear sky conditions in the Southwest of China. For the training dataset, the two infrared brightness temperatures of AGRI (BT12 and BT13), digital elevation model(DEM), latitude and longitude, surface pressure, time and relative humidity(RH) are selected. The Tair data obtained by National Centers for Environmental Information(NCEI), evaluates different machine learning algorithm performance in the Southwest of China. The results show that the performance of the XGB model is better than RF and KNN with a correlation coefficient (R) of 0.977, a mean bias of -0.036□,and the root mean square error (RMSE) of 1.266□.","PeriodicalId":257532,"journal":{"name":"2019 International Conference on Meteorology Observations (ICMO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Meteorology Observations (ICMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMO49322.2019.9025982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Air Temperature(Tair),a basic meteorological observation element, is an essential meteorological parameter in physiology, hydrology, meteorology, environment, etc. The Tair data ,which is characterized by high precision, is of great significance for the greenhouse effect, land surface processes and so on. With the advent of high performing imaging instrument onboard geostationary satellites such as Advanced Geostationary Radiation Imager(AGRI) onboard FY-4A of China, it provides high spatial and temporal resolution data. To estimate Tair from such high-resolution data, this paper presents an effective method for estimation Tair based on AGRI data. Different machine learning algorithms–-random forest (RF), k-nearest neighbors(KNN) and extreme gradient boosting(XGB)–-are evaluated for estimation of Tair under clear sky conditions in the Southwest of China. For the training dataset, the two infrared brightness temperatures of AGRI (BT12 and BT13), digital elevation model(DEM), latitude and longitude, surface pressure, time and relative humidity(RH) are selected. The Tair data obtained by National Centers for Environmental Information(NCEI), evaluates different machine learning algorithm performance in the Southwest of China. The results show that the performance of the XGB model is better than RF and KNN with a correlation coefficient (R) of 0.977, a mean bias of -0.036□,and the root mean square error (RMSE) of 1.266□.
基于FY-4A AGRI数据的气温估算:不同机器学习算法的比较
气温是一项基本的气象观测要素,是生理、水文、气象、环境等领域的重要气象参数。Tair数据具有精度高的特点,对温室效应、地表过程等具有重要意义。随着中国FY-4A星载先进同步辐射成像仪(AGRI)等高性能同步卫星成像仪的问世,提供了高时空分辨率的数据。为了从这些高分辨率数据中估计出Tair,本文提出了一种基于AGRI数据的有效的Tair估计方法。不同的机器学习算法——随机森林(RF), k近邻(KNN)和极端梯度增强(XGB)——评估了中国西南晴空条件下的Tair估计。对于训练数据集,选择AGRI的两个红外亮度温度(BT12和BT13)、数字高程模型(DEM)、经纬度、地表压力、时间和相对湿度(RH)。国家环境信息中心(NCEI)获得的Tair数据评估了中国西南地区不同机器学习算法的性能。结果表明,XGB模型的性能优于RF和KNN,相关系数(R)为0.977,平均偏差为-0.036□,均方根误差(RMSE)为1.266□。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信