A Survey on Deep Learning Techniques for Joint Named Entities and Relation Extraction

Mina Esmail Zadeh Nojoo Kambar, Armin Esmaeilzadeh, Maryam Heidari
{"title":"A Survey on Deep Learning Techniques for Joint Named Entities and Relation Extraction","authors":"Mina Esmail Zadeh Nojoo Kambar, Armin Esmaeilzadeh, Maryam Heidari","doi":"10.1109/aiiot54504.2022.9817231","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) and Relation Extraction (RE) are two principal subtasks of knowledge-based systems that extract meaningful information from unstructured text. With Recent advances in Deep Learning techniques, new models use Joint Named Entities and Relation Extraction (JNERE) techniques that simultaneously accomplish NER and RE subtasks. These models avoid the drawbacks of using the traditional pipeline method. As contributions of our study to the other related works, we specifically survey JNERE techniques. The reason for not focusing on pipeline methods or other older techniques is the recent advances of JNERE methods in achieving the state-of-art results for most databases. Additionally, we provide a comprehensive report on the embedding techniques and datasets available for this task. Finally, we discuss the approaches and how they imnpoved the results.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Named Entity Recognition (NER) and Relation Extraction (RE) are two principal subtasks of knowledge-based systems that extract meaningful information from unstructured text. With Recent advances in Deep Learning techniques, new models use Joint Named Entities and Relation Extraction (JNERE) techniques that simultaneously accomplish NER and RE subtasks. These models avoid the drawbacks of using the traditional pipeline method. As contributions of our study to the other related works, we specifically survey JNERE techniques. The reason for not focusing on pipeline methods or other older techniques is the recent advances of JNERE methods in achieving the state-of-art results for most databases. Additionally, we provide a comprehensive report on the embedding techniques and datasets available for this task. Finally, we discuss the approaches and how they imnpoved the results.
联合命名实体及关系抽取的深度学习技术综述
命名实体识别(NER)和关系提取(RE)是从非结构化文本中提取有意义信息的知识系统的两个主要子任务。随着深度学习技术的最新进展,新模型使用联合命名实体和关系提取(JNERE)技术同时完成NER和RE子任务。这些模型避免了使用传统管道方法的缺点。作为对其他相关工作的贡献,我们专门研究了JNERE技术。不关注管道方法或其他旧技术的原因是,JNERE方法最近取得了进展,可以为大多数数据库获得最先进的结果。此外,我们还提供了一份关于此任务可用的嵌入技术和数据集的综合报告。最后,我们讨论了这些方法以及它们如何改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信