Model based analysis of insider threats

Taolue Chen, Tingting Han, F. Kammüller, Ibrahim Nemli, Christian W. Probst
{"title":"Model based analysis of insider threats","authors":"Taolue Chen, Tingting Han, F. Kammüller, Ibrahim Nemli, Christian W. Probst","doi":"10.1109/CyberSecPODS.2016.7502350","DOIUrl":null,"url":null,"abstract":"In order to detect malicious insider attacks it is important to model and analyse infrastructures and policies of organisations and the insiders acting within them. We extend formal approaches that allow modelling such scenarios by quantitative aspects to enable a precise analysis of security designs. Our framework enables evaluating the risks of an insider attack to happen quantitatively. The framework first identifies an insider's intention to perform an inside attack, using Bayesian networks, and in a second phase computes the probability of success for an inside attack by this actor, using probabilistic model checking. We provide prototype tool support using Matlab for Bayesian networks and PRISM for the analysis of Markov decision processes, and validate the framework with case studies.","PeriodicalId":134449,"journal":{"name":"2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference On Cyber Security And Protection Of Digital Services (Cyber Security)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberSecPODS.2016.7502350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to detect malicious insider attacks it is important to model and analyse infrastructures and policies of organisations and the insiders acting within them. We extend formal approaches that allow modelling such scenarios by quantitative aspects to enable a precise analysis of security designs. Our framework enables evaluating the risks of an insider attack to happen quantitatively. The framework first identifies an insider's intention to perform an inside attack, using Bayesian networks, and in a second phase computes the probability of success for an inside attack by this actor, using probabilistic model checking. We provide prototype tool support using Matlab for Bayesian networks and PRISM for the analysis of Markov decision processes, and validate the framework with case studies.
基于模型的内部威胁分析
为了检测恶意的内部攻击,重要的是建模和分析组织的基础设施和政策以及在其中行动的内部人员。我们扩展了正式的方法,允许通过定量方面对此类场景进行建模,以实现对安全设计的精确分析。我们的框架能够定量地评估内部攻击的风险。该框架首先使用贝叶斯网络识别内部人员执行内部攻击的意图,然后在第二阶段使用概率模型检查计算该参与者进行内部攻击成功的概率。我们使用Matlab为贝叶斯网络和PRISM提供了原型工具支持,用于分析马尔可夫决策过程,并通过案例研究验证了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信