ETAF: An extended trust antecedents framework for trust prediction

G. Guo, Jie Zhang, Daniel Thalmann, N. Yorke-Smith
{"title":"ETAF: An extended trust antecedents framework for trust prediction","authors":"G. Guo, Jie Zhang, Daniel Thalmann, N. Yorke-Smith","doi":"10.1109/ASONAM.2014.6921639","DOIUrl":null,"url":null,"abstract":"Trust is one source of information that has been widely adopted to personalize online services for users, such as in product recommendations. However, trust information is usually very sparse or unavailable for most online systems. To narrow this gap, we propose a principled approach that predicts implicit trust from users' interactions, by extending a well-known trust antecedents framework. Specifically, we consider both local and global trustworthiness of target users, and form a personalized trust metric by further taking into account the active user's propensity to trust. Experimental results on two real-world datasets show that our approach works better than contemporary counterparts in terms of trust ranking performance when direct user interactions are limited.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"131","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 131

Abstract

Trust is one source of information that has been widely adopted to personalize online services for users, such as in product recommendations. However, trust information is usually very sparse or unavailable for most online systems. To narrow this gap, we propose a principled approach that predicts implicit trust from users' interactions, by extending a well-known trust antecedents framework. Specifically, we consider both local and global trustworthiness of target users, and form a personalized trust metric by further taking into account the active user's propensity to trust. Experimental results on two real-world datasets show that our approach works better than contemporary counterparts in terms of trust ranking performance when direct user interactions are limited.
ETAF:用于信任预测的扩展信任前因框架
信任是一种信息来源,已被广泛用于为用户提供个性化在线服务,例如在产品推荐中。然而,对于大多数在线系统来说,信任信息通常非常稀疏或不可用。为了缩小这一差距,我们提出了一种原则性的方法,通过扩展众所周知的信任前因式框架,预测用户交互中的隐含信任。具体来说,我们考虑了目标用户的本地可信度和全局可信度,并进一步考虑活跃用户的信任倾向,形成个性化的信任度量。在两个真实数据集上的实验结果表明,当直接用户交互有限时,我们的方法在信任排名性能方面比当代同行更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信