A Secure Protocol for High-Dimensional Big Data Providing Data Privacy

J. Anitha, S. Prasad
{"title":"A Secure Protocol for High-Dimensional Big Data Providing Data Privacy","authors":"J. Anitha, S. Prasad","doi":"10.4018/978-1-5225-9611-0.CH016","DOIUrl":null,"url":null,"abstract":"Due to recent technological development, a huge amount of data generated by social networking, sensor networks, internet, etc., adds more challenges when performing data storage and processing tasks. During PPDP, the collected data may contain sensitive information about the data owner. Directly releasing this for further processing may violate the privacy of the data owner, hence data modification is needed so that it does not disclose any personal information. The existing techniques of data anonymization have a fixed scheme with a small number of dimensions. There are various types of attacks on the privacy of data like linkage attack, homogeneity attack, and background knowledge attack. To provide an effective technique in big data to maintain data privacy and prevent linkage attacks, this paper proposes a privacy preserving protocol, UNION, for a multi-party data provider. Experiments show that this technique provides a better data utility to handle high dimensional data, and scalability with respect to the data size compared with existing anonymization techniques.","PeriodicalId":354100,"journal":{"name":"Handbook of Research on Machine and Deep Learning Applications for Cyber Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Machine and Deep Learning Applications for Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9611-0.CH016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to recent technological development, a huge amount of data generated by social networking, sensor networks, internet, etc., adds more challenges when performing data storage and processing tasks. During PPDP, the collected data may contain sensitive information about the data owner. Directly releasing this for further processing may violate the privacy of the data owner, hence data modification is needed so that it does not disclose any personal information. The existing techniques of data anonymization have a fixed scheme with a small number of dimensions. There are various types of attacks on the privacy of data like linkage attack, homogeneity attack, and background knowledge attack. To provide an effective technique in big data to maintain data privacy and prevent linkage attacks, this paper proposes a privacy preserving protocol, UNION, for a multi-party data provider. Experiments show that this technique provides a better data utility to handle high dimensional data, and scalability with respect to the data size compared with existing anonymization techniques.
提供数据隐私的高维大数据安全协议
由于近年来技术的发展,社交网络、传感器网络、互联网等产生的海量数据给数据存储和处理任务带来了更多的挑战。在PPDP过程中,收集的数据可能包含数据所有者的敏感信息。直接发布这些数据进行进一步处理可能会侵犯数据所有者的隐私,因此需要对数据进行修改,以免泄露任何个人信息。现有的数据匿名化技术具有固定的方案和少量的维度。针对数据隐私的攻击有多种类型,如联动攻击、同质攻击、背景知识攻击等。为了在大数据环境中提供一种有效的保护数据隐私和防止联动攻击的技术,本文提出了一种面向多方数据提供者的隐私保护协议UNION。实验表明,与现有的匿名化技术相比,该技术提供了更好的数据实用程序来处理高维数据,并且在数据大小方面具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信