Proofs of Conjectures about Pattern-Avoiding Linear Extensions

Colin Defant
{"title":"Proofs of Conjectures about Pattern-Avoiding Linear Extensions","authors":"Colin Defant","doi":"10.23638/DMTCS-21-4-16","DOIUrl":null,"url":null,"abstract":"After fixing a canonical ordering (or labeling) of the elements of a finite poset, one can associate each linear extension of the poset with a permutation. Some recent papers consider specific families of posets and ask how many linear extensions give rise to permutations that avoid certain patterns. We build off of two of these papers. We first consider pattern avoidance in $k$-ary heaps, where we obtain a general result that proves a conjecture of Levin, Pudwell, Riehl, and Sandberg in a special case. We then prove some conjectures that Anderson, Egge, Riehl, Ryan, Steinke, and Vaughan made about pattern-avoiding linear extensions of rectangular posets.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23638/DMTCS-21-4-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

After fixing a canonical ordering (or labeling) of the elements of a finite poset, one can associate each linear extension of the poset with a permutation. Some recent papers consider specific families of posets and ask how many linear extensions give rise to permutations that avoid certain patterns. We build off of two of these papers. We first consider pattern avoidance in $k$-ary heaps, where we obtain a general result that proves a conjecture of Levin, Pudwell, Riehl, and Sandberg in a special case. We then prove some conjectures that Anderson, Egge, Riehl, Ryan, Steinke, and Vaughan made about pattern-avoiding linear extensions of rectangular posets.
避免模式线性扩展猜想的证明
在确定有限偏序集元素的规范排序(或标记)之后,可以将偏序集的每个线性扩展与置换联系起来。最近的一些论文考虑了特定的偏序集族,并询问有多少线性扩展产生了避免某些模式的排列。我们以其中两篇论文为基础。我们首先考虑$k$ ary堆中的模式避免,在那里我们得到了一个一般的结果,证明了Levin, Pudwell, Riehl和Sandberg在特殊情况下的一个猜想。然后,我们证明了Anderson, Egge, Riehl, Ryan, Steinke和Vaughan关于矩形偏置集的免模式线性扩展的一些猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信