Power Pattern Matching Through the Hybrid Bayesian Compressive Sensing

N. Anselmi, G. Oliveri, A. Massa
{"title":"Power Pattern Matching Through the Hybrid Bayesian Compressive Sensing","authors":"N. Anselmi, G. Oliveri, A. Massa","doi":"10.1109/CAMA.2018.8530538","DOIUrl":null,"url":null,"abstract":"In this work, the synthesis problem of sparse linear arrays complying with user defined power masks is addressed by means of a Compressive Sensing $(CS)$-based methodology. A novel hybrid Bayesian $CS$ (BCS) approach integrating a mask-constrained synthesis within a $BCS$ solver is proposed, enabling an effective and efficient tool for the design of sparse arrays, starting from arbitrary user-defined requirements. A simple example validating the proposed approach is reported and discussed.","PeriodicalId":112989,"journal":{"name":"2018 IEEE Conference on Antenna Measurements & Applications (CAMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Antenna Measurements & Applications (CAMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMA.2018.8530538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the synthesis problem of sparse linear arrays complying with user defined power masks is addressed by means of a Compressive Sensing $(CS)$-based methodology. A novel hybrid Bayesian $CS$ (BCS) approach integrating a mask-constrained synthesis within a $BCS$ solver is proposed, enabling an effective and efficient tool for the design of sparse arrays, starting from arbitrary user-defined requirements. A simple example validating the proposed approach is reported and discussed.
基于混合贝叶斯压缩感知的功率模式匹配
在这项工作中,通过基于压缩感知$(CS)$的方法解决了符合用户定义功率掩模的稀疏线性阵列的综合问题。提出了一种新的混合贝叶斯$CS$ (BCS)方法,该方法在$BCS$求解器中集成了掩模约束合成,从而为稀疏阵列的设计提供了一种有效的工具,可以从任意用户定义的需求开始。通过一个简单的例子对所提出的方法进行了验证和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信