Lufeng Chen, Qihang Chen, Xuan Tan, Shuang Liu, Xiaojie Xue
{"title":"Development of an Extrusion-based Five-axis 3D Printing System for Manufacturing of Complex Parts","authors":"Lufeng Chen, Qihang Chen, Xuan Tan, Shuang Liu, Xiaojie Xue","doi":"10.1109/ICARM58088.2023.10218892","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) has gained significant attention in academia and industry over recent decades. Two inherent challenges faced by conventional three-axis printing are the staircase effect and the need for support structures for overhangs. The emerging multi-axis AM introduces a novel printing process with a variable build direction, offering potential solutions to mitigate these issues. In this study, we develop an extrusion-based five-axis Fused Deposition Modeling (FDM) AM system, concentrating on the implementation of cutting-edge multi-axis printing strategies. We present a collection of algorithms, encompassing the 3+2-axis printing pipeline and the five-axis sculpture printing, to demonstrate the feasibility and versatility of our system. The findings reveal that our system can achieve support-free printing of intricate components with enhanced surface quality and curved layer sculpting with variable depth, while simultaneously reducing both printing time and material consumption.","PeriodicalId":220013,"journal":{"name":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM58088.2023.10218892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) has gained significant attention in academia and industry over recent decades. Two inherent challenges faced by conventional three-axis printing are the staircase effect and the need for support structures for overhangs. The emerging multi-axis AM introduces a novel printing process with a variable build direction, offering potential solutions to mitigate these issues. In this study, we develop an extrusion-based five-axis Fused Deposition Modeling (FDM) AM system, concentrating on the implementation of cutting-edge multi-axis printing strategies. We present a collection of algorithms, encompassing the 3+2-axis printing pipeline and the five-axis sculpture printing, to demonstrate the feasibility and versatility of our system. The findings reveal that our system can achieve support-free printing of intricate components with enhanced surface quality and curved layer sculpting with variable depth, while simultaneously reducing both printing time and material consumption.