Inference for order reduction in Markov random fields

Andrew C. Gallagher, Dhruv Batra, Devi Parikh
{"title":"Inference for order reduction in Markov random fields","authors":"Andrew C. Gallagher, Dhruv Batra, Devi Parikh","doi":"10.1109/CVPR.2011.5995452","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm for order reduction of factors in High-Order Markov Random Fields (HOMRFs). Standard techniques for transforming arbitrary high-order factors into pairwise ones have been known for a long time. In this work, we take a fresh look at this problem with the following motivation: It is important to keep in mind that order reduction is followed by an inference procedure on the order-reduced MRF. Since there are many possible ways of performing order reduction, a technique that generates “easier” pairwise inference problems is a better reduction. With this motivation in mind, we introduce a new algorithm called Order Reduction Inference (ORI) that searches over a space of order reduction methods to minimize the difficulty of the resultant pairwise inference problem. We set up this search problem as an energy minimization problem. We show that application of ORI for order reduction outperforms known order reduction techniques both in simulated problems and in real-world vision applications.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

This paper presents an algorithm for order reduction of factors in High-Order Markov Random Fields (HOMRFs). Standard techniques for transforming arbitrary high-order factors into pairwise ones have been known for a long time. In this work, we take a fresh look at this problem with the following motivation: It is important to keep in mind that order reduction is followed by an inference procedure on the order-reduced MRF. Since there are many possible ways of performing order reduction, a technique that generates “easier” pairwise inference problems is a better reduction. With this motivation in mind, we introduce a new algorithm called Order Reduction Inference (ORI) that searches over a space of order reduction methods to minimize the difficulty of the resultant pairwise inference problem. We set up this search problem as an energy minimization problem. We show that application of ORI for order reduction outperforms known order reduction techniques both in simulated problems and in real-world vision applications.
马尔可夫随机场的降阶推理
提出了一种高阶马尔可夫随机场(HOMRFs)因子降阶算法。将任意高阶因子转换成两两因子的标准技术早已为人所知。在这项工作中,我们以以下动机重新审视这个问题:重要的是要记住,顺序约简之后是对顺序约简MRF的推理过程。由于执行阶约简有许多可能的方法,因此生成“更容易”的成对推理问题的技术是更好的约简方法。考虑到这一动机,我们引入了一种称为有序约简推理(ORI)的新算法,该算法在有序约简方法的空间中搜索,以最小化结果成对推理问题的难度。我们将这个搜索问题设置为能量最小化问题。我们表明,在模拟问题和现实世界视觉应用中,ORI用于降阶的应用优于已知的降阶技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信