L. Igosheva, А ИгошеваЛ., A. Grishina, С ГришинаА.
{"title":"REVIEW OF THE BASIC METHODS OF THE GROUND IMPROVEMENT","authors":"L. Igosheva, А ИгошеваЛ., A. Grishina, С ГришинаА.","doi":"10.15593/2224-9826/2016.2.01","DOIUrl":null,"url":null,"abstract":"The problem of improving soil physical and mechanical properties always appears when constructing and operating buildings and structures on soft ground to increase their bearing capacity and reduce deformability. On the one hand this is a problem, but on the other it is an opportunity for innovation and modernization of the existing methods of soil strengthening. Artificial soil strengthening is the impact on the soil through a variety of structural and technological measures, which increases soil bearing capacity and reduces strain. Currently, there are many methods of soil strengthening. Each method has advantages and disadvantages. Application area of the method often depends on the type of soil. This article presents the most popular methods of soil strengthening such as thermal grouting by hot air and burning fuel, freezing, thawing naturally and artificially, electro-osmosis, water depression by light ejector well points and vacuum, preloading using fill, vibrocompaction, dynamic and explosive compaction, the use of different fibrous materials and stone columns, silicatization, the use of enzymes, tarring of soil, jet grouting, bituminous grouting. Also, recommended soil conditions are described in tables for the use of a particular method considering its advantages and disadvantages. Each method is briefly described the work technique and the mechanisms used. The choice of each method must be unique. With this classification and tables the selection of a suitable method of soil strengthening can be greatly simplified.","PeriodicalId":287483,"journal":{"name":"PNRPU Construction and Architecture Bulletin","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNRPU Construction and Architecture Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15593/2224-9826/2016.2.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The problem of improving soil physical and mechanical properties always appears when constructing and operating buildings and structures on soft ground to increase their bearing capacity and reduce deformability. On the one hand this is a problem, but on the other it is an opportunity for innovation and modernization of the existing methods of soil strengthening. Artificial soil strengthening is the impact on the soil through a variety of structural and technological measures, which increases soil bearing capacity and reduces strain. Currently, there are many methods of soil strengthening. Each method has advantages and disadvantages. Application area of the method often depends on the type of soil. This article presents the most popular methods of soil strengthening such as thermal grouting by hot air and burning fuel, freezing, thawing naturally and artificially, electro-osmosis, water depression by light ejector well points and vacuum, preloading using fill, vibrocompaction, dynamic and explosive compaction, the use of different fibrous materials and stone columns, silicatization, the use of enzymes, tarring of soil, jet grouting, bituminous grouting. Also, recommended soil conditions are described in tables for the use of a particular method considering its advantages and disadvantages. Each method is briefly described the work technique and the mechanisms used. The choice of each method must be unique. With this classification and tables the selection of a suitable method of soil strengthening can be greatly simplified.