Efficient Dependency Tracking in Packetised Media Streams

Alexander Eichhorn
{"title":"Efficient Dependency Tracking in Packetised Media Streams","authors":"Alexander Eichhorn","doi":"10.1109/MMSP.2007.4412837","DOIUrl":null,"url":null,"abstract":"Scheduling and error control mechanisms for robust delivery of media streams over packet networks rely on distortion metrics to optimally allocate resources and protect streams front uncontrolled quality degradation. Current distortion metrics are accurate, but the actual distortion values are expensive to obtain. Therefore, distortion models often assume fixed dependency patterns and neglect fragmentation issues. While this decreases runtime complexity, it also limits the application of such models to special stream classes and network environments. In response, we present a practical, efficient and format-independent framework to reason about dependencies in media streams. Based on correlation analysis we show that the estimations made by our framework match traditional distortion metrics for a number of H.264 encoded streams. Performance benchmarks indicate, that our framework is applicable at very-low computational overheads.","PeriodicalId":225295,"journal":{"name":"2007 IEEE 9th Workshop on Multimedia Signal Processing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 9th Workshop on Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2007.4412837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Scheduling and error control mechanisms for robust delivery of media streams over packet networks rely on distortion metrics to optimally allocate resources and protect streams front uncontrolled quality degradation. Current distortion metrics are accurate, but the actual distortion values are expensive to obtain. Therefore, distortion models often assume fixed dependency patterns and neglect fragmentation issues. While this decreases runtime complexity, it also limits the application of such models to special stream classes and network environments. In response, we present a practical, efficient and format-independent framework to reason about dependencies in media streams. Based on correlation analysis we show that the estimations made by our framework match traditional distortion metrics for a number of H.264 encoded streams. Performance benchmarks indicate, that our framework is applicable at very-low computational overheads.
在打包媒体流中有效的依赖跟踪
在分组网络上健壮的媒体流传输的调度和错误控制机制依赖于失真度量来优化资源分配和保护流不受控制的质量退化。目前的失真指标是准确的,但实际的失真值是昂贵的获得。因此,扭曲模型通常假定固定的依赖模式,而忽略碎片问题。虽然这降低了运行时的复杂性,但它也限制了这种模型在特殊流类和网络环境中的应用。作为回应,我们提出了一个实用、高效和格式无关的框架来推断媒体流中的依赖关系。基于相关分析,我们证明了我们的框架所做的估计与传统的H.264编码流的失真指标相匹配。性能基准测试表明,我们的框架适用于非常低的计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信