On the expressive power of CTL

F. Moller, A. Rabinovich
{"title":"On the expressive power of CTL","authors":"F. Moller, A. Rabinovich","doi":"10.1109/LICS.1999.782631","DOIUrl":null,"url":null,"abstract":"We show that the expressive power of the branching time logic CTL coincides with that of the class of bisimulation invariant properties expressible in so-called monadic path logic: monadic second order logic in which set quantification is restricted to paths. In order to prove this result, we first prove a new composition theorem for trees. This approach is adapted from the approach of Hafer and Thomas in their proof that CTL coincides with the whole of monadic path logic over the class of full binary trees.","PeriodicalId":352531,"journal":{"name":"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1999.782631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

We show that the expressive power of the branching time logic CTL coincides with that of the class of bisimulation invariant properties expressible in so-called monadic path logic: monadic second order logic in which set quantification is restricted to paths. In order to prove this result, we first prove a new composition theorem for trees. This approach is adapted from the approach of Hafer and Thomas in their proof that CTL coincides with the whole of monadic path logic over the class of full binary trees.
论CTL的表达能力
我们证明了分支时间逻辑CTL的表达能力与一类可在所谓的一元路径逻辑中表达的双模拟不变性质的表达能力是一致的:一元二阶逻辑中集合量化仅限于路径。为了证明这个结果,我们首先证明了树的一个新的复合定理。这种方法改编自Hafer和Thomas的方法,在他们的证明中,CTL与全二叉树类上的整个一元路径逻辑一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信