{"title":"An Architecture for Energy-aware On-demand Mobile Network Management","authors":"Manuel Peuster, H. Karl","doi":"10.1145/2785971.2785973","DOIUrl":null,"url":null,"abstract":"The increasing amount of mobile traffic leads to a significantly higher energy consumption of mobile networks that is mainly caused by the high number of required base stations. One recent solution for this is based on a two-layered network that uses long-range macro cells to provide a full coverage signaling overlay and short-range small cells for fast data transmissions. These small cells can be switched off when they are not needed and allow network-wide energy optimizations. This paper presents an architecture that extends existing mobile networks to integrate a small cell layer that supports on-demand cell activation. We discuss how additional small cells can be interconnected with existing core components and how they can be controlled by a resource management component. Finally, a Wi-Fi based proof of concept testbed implementation is presented that demonstrates the feasibility of the approach.","PeriodicalId":166050,"journal":{"name":"Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on All Things Cellular: Operations, Applications and Challenges","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2785971.2785973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The increasing amount of mobile traffic leads to a significantly higher energy consumption of mobile networks that is mainly caused by the high number of required base stations. One recent solution for this is based on a two-layered network that uses long-range macro cells to provide a full coverage signaling overlay and short-range small cells for fast data transmissions. These small cells can be switched off when they are not needed and allow network-wide energy optimizations. This paper presents an architecture that extends existing mobile networks to integrate a small cell layer that supports on-demand cell activation. We discuss how additional small cells can be interconnected with existing core components and how they can be controlled by a resource management component. Finally, a Wi-Fi based proof of concept testbed implementation is presented that demonstrates the feasibility of the approach.