Analisis Performa Seleksi Atribut untuk Menentukan Potensi Mahasiswa Putus Studi

Vivi Nur Wijayaningrum, Ika Kusumaning Putri, Annisa Puspa Kirana, Muhammad Rizki Mubarok, Deatrisya Mirela Harahap, Berryl Radian Hamesha
{"title":"Analisis Performa Seleksi Atribut untuk Menentukan Potensi Mahasiswa Putus Studi","authors":"Vivi Nur Wijayaningrum, Ika Kusumaning Putri, Annisa Puspa Kirana, Muhammad Rizki Mubarok, Deatrisya Mirela Harahap, Berryl Radian Hamesha","doi":"10.33795/jip.v9i2.1300","DOIUrl":null,"url":null,"abstract":"Banyaknya kasus mahasiswa putus studi yang terjadi di sejumlah pendidikan tinggi menjadi perhatian khusus di berbagai negara. Efek yang ditimbulkan akibat masalah ini antara lain dapat menghambat perekonomian dan produktivitas di negara tersebut. Untuk mengatasi hal tersebut, beberapa algoritma telah digunakan untuk memprediksi potensi mahasiswa putus studi. Berbagai atribut data yang berkaitan dengan informasi mahasiswa, seperti data pribadi, riwayat akademik, dan latar belakang mahasiswa digunakan sebagai bahan pertimbangan mahasiswa tersebut berpotensi putus studi atau tidak. Namun, banyaknya atribut data yang digunakan pada proses prediksi memungkinkan terjadinya overfitting, menurunnya performa algoritma, dan menambah waktu komputasi. Pada penelitian ini, seleksi atribut data dilakukan dengan menggunakan Chi Square, Pearson Correlation Coefficient, dan Random Forest untuk selanjutnya dapat dilakukan prediksi menggunakan Multi-Layer Perceptron. Hasil dari skenario pengujian dengan menggunakan berbagai variasi banyaknya atribut data menunjukkan terjadinya peningkatan nilai akurasi dan F1-Score saat dilakukan seleksi atribut dengan nilai rata-rata di atas 0.8.","PeriodicalId":232501,"journal":{"name":"Jurnal Informatika Polinema","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Polinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33795/jip.v9i2.1300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Banyaknya kasus mahasiswa putus studi yang terjadi di sejumlah pendidikan tinggi menjadi perhatian khusus di berbagai negara. Efek yang ditimbulkan akibat masalah ini antara lain dapat menghambat perekonomian dan produktivitas di negara tersebut. Untuk mengatasi hal tersebut, beberapa algoritma telah digunakan untuk memprediksi potensi mahasiswa putus studi. Berbagai atribut data yang berkaitan dengan informasi mahasiswa, seperti data pribadi, riwayat akademik, dan latar belakang mahasiswa digunakan sebagai bahan pertimbangan mahasiswa tersebut berpotensi putus studi atau tidak. Namun, banyaknya atribut data yang digunakan pada proses prediksi memungkinkan terjadinya overfitting, menurunnya performa algoritma, dan menambah waktu komputasi. Pada penelitian ini, seleksi atribut data dilakukan dengan menggunakan Chi Square, Pearson Correlation Coefficient, dan Random Forest untuk selanjutnya dapat dilakukan prediksi menggunakan Multi-Layer Perceptron. Hasil dari skenario pengujian dengan menggunakan berbagai variasi banyaknya atribut data menunjukkan terjadinya peningkatan nilai akurasi dan F1-Score saat dilakukan seleksi atribut dengan nilai rata-rata di atas 0.8.
分析确定辍学生潜力的属性选择性能
许多高等教育的辍学生案件引起了国家的特别关注。这些问题所造成的影响可能会阻碍该国的经济和生产力。为了解决这个问题,一些算法被用来预测辍学生的潜力。与学生信息相关的数据属性,如个人数据、学术历史和学生背景,被用作考虑学生是否有退学倾向的材料。然而,在预测过程中使用的数据属性的数量允许过度匹配、算法性能的下降以及增加计算时间。在这项研究中,数据属性选择是使用Chi Square,皮尔森Correlation coeffication和随机森林进一步使用多层Perceptron进行预测。测试场景的结果,使用不同数量的数据属性的变化,表明在进行平均分数选择时,准确性值和F1-Score的增加发生在0.8以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信