Word-level Language Identification and Localization in Code-Mixed Urdu-English Text

Eysha Raazia, Amina Bibi, Muhammad Umair Arshad
{"title":"Word-level Language Identification and Localization in Code-Mixed Urdu-English Text","authors":"Eysha Raazia, Amina Bibi, Muhammad Umair Arshad","doi":"10.1109/ICOSST57195.2022.10016848","DOIUrl":null,"url":null,"abstract":"Language Identification is significant for most Natural Language Processing (NLP) tasks to work precisely. Language Identification is still very challenging because of the range of dialects. The major challenge in Language Identification (LID) task is the lack of availability of tools for understanding the context of multiple languages. We proposed a deep learning neural network Bi-LSTM CNN for word-level classification for Language Identification (LID) and localization of Roman Urdu and English in the code-switch text in this paper. We utilized the dataset of code-switch text having variant spellings of the same Roman Urdu words, generated from different social media platforms as they are a rich source of code-switch languages. We used GoogleNews Word2Vec Vectorizer for word embeddings. The embedding layer is followed by the Bidirectional long-short term memory (Bi-LSTM) layers along with the Convolutional Neural Network (CNN). We experimented with the dataset on different variations of LSTM and CNN to achieve the best possible results. We achieved 90.40% accuracy and a 90.39% F1 score.","PeriodicalId":238082,"journal":{"name":"2022 16th International Conference on Open Source Systems and Technologies (ICOSST)","volume":"24 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Open Source Systems and Technologies (ICOSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSST57195.2022.10016848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Language Identification is significant for most Natural Language Processing (NLP) tasks to work precisely. Language Identification is still very challenging because of the range of dialects. The major challenge in Language Identification (LID) task is the lack of availability of tools for understanding the context of multiple languages. We proposed a deep learning neural network Bi-LSTM CNN for word-level classification for Language Identification (LID) and localization of Roman Urdu and English in the code-switch text in this paper. We utilized the dataset of code-switch text having variant spellings of the same Roman Urdu words, generated from different social media platforms as they are a rich source of code-switch languages. We used GoogleNews Word2Vec Vectorizer for word embeddings. The embedding layer is followed by the Bidirectional long-short term memory (Bi-LSTM) layers along with the Convolutional Neural Network (CNN). We experimented with the dataset on different variations of LSTM and CNN to achieve the best possible results. We achieved 90.40% accuracy and a 90.39% F1 score.
语码混合乌尔都语-英语文本的词级语言识别与定位
语言识别对于大多数自然语言处理(NLP)任务的精确工作具有重要意义。由于方言的多样性,语言识别仍然非常具有挑战性。语言识别(LID)任务的主要挑战是缺乏可用的工具来理解多种语言的上下文。本文提出了一种深度学习神经网络Bi-LSTM CNN,用于语码转换文本中罗马乌尔都语和英语的词级分类和语言识别(LID)定位。我们使用的代码转换文本数据集具有相同罗马乌尔都语单词的不同拼写,这些数据集来自不同的社交媒体平台,因为它们是代码转换语言的丰富来源。我们使用GoogleNews Word2Vec矢量器进行词嵌入。嵌入层之后是双向长短期记忆(Bi-LSTM)层和卷积神经网络(CNN)。我们在LSTM和CNN的不同变体上对数据集进行了实验,以获得最佳结果。我们获得了90.40%的准确率和90.39%的F1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信