Segmental K-Means initialization for SOM-based speaker clustering

O. Ben-Harush, I. Lapidot, H. Guterman
{"title":"Segmental K-Means initialization for SOM-based speaker clustering","authors":"O. Ben-Harush, I. Lapidot, H. Guterman","doi":"10.21437/Interspeech.2008-4","DOIUrl":null,"url":null,"abstract":"A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.","PeriodicalId":224749,"journal":{"name":"2008 50th International Symposium ELMAR","volume":"31 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 50th International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/Interspeech.2008-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.
基于som的说话人聚类的分段K-Means初始化
提出了一种说话人聚类应用中数据初始分配的新方法。该方法在基于竞争学习之前采用分段k-均值聚类算法。聚类系统依赖于自组织映射(SOM)作为说话人建模和似然估计。使用NIST标准对LDC CALLHOME美语语音语料库中的108个两个人对话进行了性能评估,结果表明,相对于随机初始化的聚类系统,聚类错误率(CER)提高了20%-30%。该算法显著减少了迭代次数,提高了聚类系统的速度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信