{"title":"Segmental K-Means initialization for SOM-based speaker clustering","authors":"O. Ben-Harush, I. Lapidot, H. Guterman","doi":"10.21437/Interspeech.2008-4","DOIUrl":null,"url":null,"abstract":"A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.","PeriodicalId":224749,"journal":{"name":"2008 50th International Symposium ELMAR","volume":"31 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 50th International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/Interspeech.2008-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
A new approach for initial assignment of data in a speaker clustering application is presented. This approach employs segmental k-means clustering algorithm prior to competitive based learning. The clustering system relies on self-organizing maps (SOM) for speaker modeling and as a likelihood estimator. Performance is evaluated on 108 two speaker conversations taken from LDC CALLHOME American English Speech corpus using NIST criterion and shows an improvement of 20%-30% in cluster error rate (CER) relative to the randomly initialized clustering system. The number of iterations was reduced significantly, which contributes to both speed and efficiency of the clustering system.